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Abstract
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1 Introduction

Digital advertising comprises the largest share of advertising spending at U.S. firms, sur-

passing both TV and print advertising in 2019 and reaching $506 billion in total spending

worldwide in 2021.1 Its growth is driven by two factors: precise targeting using consumer

data and real-time performance measurement.2 These capabilities reduced customer acqui-

sition costs for the e-commerce industry and fostered the rise of direct-to-consumer (DTC)

firms by efficiently matching these firms to their audiences. This technology, therefore, has

potentially large positive welfare ramifications by enabling the existence of these firms.

However, many consumers and privacy advocates have raised concerns about the tracking

of user behavior by online platforms and advertising intermediaries, including third parties

not explicitly authorized by users. In response, privacy protection measures such as the

EU’s General Data Protection Regulation (GDPR) and Apple’s App Tracking Transparency

(ATT) have sought to limit firms’ access to consumer data. These policies may harm firms

by reducing their ability to target consumers, potentially leading to welfare losses for both

firms and customers.

In this paper, we quantify the economic costs of one such privacy protection measure –

Apple’s App Tracking Transparency (ATT) – which allows Apple iOS users to opt out of

data sharing across their apps (third-party data sharing) by prompting users to either allow

or disallow data sharing. The vast majority (80–85%) of users opted out when prompted

(Baviskar et al., 2024, Chen, 2021, Laziuk, 2021), disrupting platforms’ ability to measure

and target ads effectively. Our analysis focuses on three key questions. First, how did

ATT impact advertising effectiveness across Meta and Google?3 In principle, other mobile

app advertising platforms such as Snapchat and TikTok are also impacted by the ATT

policy change, but as Meta and Google are the dominant players in this industry, we focus

1https://www.emarketer.com/content/digital-ad-spend-worldwide-pass-600-billion-this-year/
2Unlike general brand advertising, which builds equity over time without direct response metrics

(Borkovsky et al., 2017).
3Here and throughout, we use the term Meta advertising to refer to advertising done on Facebook,

Instagram, and the Meta Audience Network as we do not distinguish between these platforms in our analysis.
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on them. Second, how did firms reallocate advertising spending between these platforms?

Finally, how did these changes affect firm revenues? By quantifying revenue impacts and

understanding the corresponding effects in the advertising market that contribute to it, we

provide a comprehensive assessment of ATT’s economic consequences.

We combine two unique sources of data on firm advertising performance and revenue to

answer these questions. One comes from an anonymous data provider that enables a granular

view of advertising spending and performance across Meta, Google, and TikTok for 1,221

firms, which we denote throughout as the advertising dataset. The other comes from Grips

Intelligence,4 a leading data analytics and market intelligence firm, providing transaction

and revenue data for 773 firms, which we denote throughout as the revenue dataset.

Regarding the effects of ATT on advertising performance, we show that sales conversions

observed by Meta drop in line with the gradual adoption of the iOS version that includes

ATT. We then perform a within-firm analysis to estimate the causal effect of ATT on forms

of advertising that are reliant on off-platform data. We compare Meta campaigns optimized

for off-platform conversions (which were impacted by ATT) versus on-platform clicks (which

were not) and find a 36.6% relative reduction in click-through rates for conversion-optimized

campaigns (95% CI: 18.2% to 54.5%). Additionally, Meta’s online advertising spending share

declined by 4.4%, with the majority of this shift benefiting Google, which was less affected

by ATT. Together, these analyses show that, for an important class of e-commerce firms,

the performance of conversion-optimized Meta advertising was significantly degraded due to

ATT and that there was some equilibrium adjustment as a result.

We then explore the downstream implications of this on firm revenues using the revenue

dataset. While measuring this impact is important, we face several significant empirical

challenges. First, ATT impacts all firms simultaneously. There is no staggered rollout across

advertisers or set of fully-exempted firms that could be used as a control group. Second,

there is substantial variation in revenue across e-commerce firms as well as within these firms

4https://gripsintelligence.com/
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over time, making even clean designs subject to noisy estimates. And third, the extent to

which firms were exposed to the policy shock is determined by the extent to which they

rely on targeted advertising and iOS consumers, both of which are measured with different

degrees of measurement error.

We approach this challenge by making a set of comparisons of revenue before and after

ATT by more vs less exposed firms. Rather than attempting to identify a single point

estimate, we use different estimation approaches and two different measures of ATT-exposure

to construct a set of bounds for the plausible range of the average treatment effect. We

construct two measures of treatment for each firm based on exposure to ATT. The first is

their pre-ATT reliance on Meta, measured as the average share of revenue attributable to

Meta advertising in the year before ATT. The second is the average share of their revenue

that comes from iOS users in the pre-period. Both iOS and Meta reliance expose firms more

to the ATT policy change, but as these measures are not highly correlated, they capture

ATT exposure in different ways. We begin by stratifying firms based on median splits of

these treatment measures and conducting difference-in-differences analyses. We find that

after ATT went into effect, firms that were more Meta-dependent saw a decrease in overall

revenue by 37.1% relative to less Meta-dependent firms (95% CI: 12.4% to 55.1%) and firms

that were more iOS-dependent saw a decrease in overall revenue by 40.1% relative to less

iOS-dependent firms (95% CI: 18.0% to 57.1%).5

Next, we consider a specification that more explicitly addresses the concern that virtually

all firms have at least some exposure to ATT by implementing the heterogeneous adoption

design estimator of de Chaisemartin et al. (2024), which is specifically developed for settings

where all units are treated but with different intensities. When using the Meta revenue share

as the treatment variable, this method produces estimates that imply that relative to below-

5Breaking firms into smaller subgroups based on level of treatment, such as quartiles or terciles, and
performing the same difference-in-differences exercise produce estimates with similar effect sizes that are
generally increasing in the degree of treatment but in some cases suggest a non-linear relationship between
treatment and effect magnitude. We attribute these instances to measurement error in the treatment variable
rather than true non-linear relationship.
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median treated firms, above-median treatment is associated with a post-ATT decrease in

revenue of 8.1% (95% CI: -11.2% to -5.1%).6 When using iOS-dependence as the treatment

variable, the HAD coefficients imply an 18.5% relative revenue reduction for the more ATT-

exposed firms (95% CI: -26.9% to -10.1%). Because it is difficult to precisely attribute revenue

to specific types of advertising (or mobile device), these treatment variables are subject

to measurement error which may result in substantial attenuation bias pushing estimates

towards zero.7 While not formally bounding the true effects, we believe these sets of estimates

provide a reasonable range for the magnitude of ATT’s impact on firm revenues.

Our results have several important policy and managerial implications. The large and

negative impact on revenues indicates that opt-in privacy protection measures have a sig-

nificant economic cost for firms that rely on targeted advertising for revenue generation,

especially for smaller firms. The magnitude of the revenue reductions suggests that privacy

protection measures can threaten the viability of business models, such as those of DTC

firms that rely on targeted advertising, and that the cost of starting up such a business

is now substantially higher because of ATT. While recognizing the potential welfare gains

associated with added privacy protection, our results suggest there may be a countervailing

effect on consumer welfare through this change in the composition of firms that can succeed

in the product market. In addition, our results on the value of user data for targeted adver-

tising have implications for the potential costs of the European Commission’s prosecution

of Meta’s “pay or OK” practices for consumer data and lower-funnel tracking restrictions

by Meta for health and wellness brands which went into effect in January 2025. Finally,

while we do not directly observe Apple’s advertising platform in our data, our results also

6We derive this from multiplying the coefficients by the average treatment levels among the treated and
control units, and choose this comparison to be roughly equivalent to the effect size estimated in the median
split difference-in-differences estimates described above.

7An additional implication is that these estimates show a decrease in revenue that is typically larger
than the share of revenue attributed to Meta advertising and iOS users. This could result from the use of
last-touch attribution, which significantly underestimates true revenue associated with Meta advertising, as
well as the long-term loss in revenue from lack of customer acquisition. In addition, there may be spillover
effects whereby the loss of a substantial amount of data makes targeting models less effective for all user
types and advertisers. We discuss these issues in greater detail in section 4.
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speak to ongoing antitrust concerns around the potentially anticompetitive impacts of ATT

(CMA, 2022; Sokol & Zhu, 2021) by showing the impact on competing advertising platforms,

especially Meta and Google.

Related Literature We contribute to a growing literature studying the economic costs

of privacy protection measures (Acquisti et al., 2016; Dubé et al., 2024; Goldfarb & Que,

2023). This includes work on the cost to publishers and advertisers of the EU’s General

Data Protection Regulation (GDPR) (Aridor et al., 2023; Goldberg et al., 2024; Johnson,

2023; Lefrere et al., Forthcoming), the potential impact of limitations on cookies (Goldfarb

& Tucker, 2011; Johnson et al., 2020; Kobayashi et al., 2024; Miller & Skiera, 2023), the

iOS privacy nutrition labels (Bian et al., 2021), and the use of ad blockers (Todri, 2022; Yan

et al., 2022).

Our work is most closely related to several papers that also study the impact of ATT.

Wernerfelt et al. (2022) use internal access to Meta to run large-scale field studies studying

the effectiveness of ad targeting in which they compare the performance of “offsite conversion-

optimized” ad campaigns utilizing offsite data with the performance of ad campaigns treated

with “link-click optimization” that make no use of offsite data. They find that removing

the offsite data from targeting decreases targeting effectiveness and increases the median

cost per incremental customer by 37%, with large effects for small businesses. We extend

and complement these findings by measuring the comprehensive effects of ATT using ob-

servational data and thus directly incorporating possible equilibrium adjustments by firms

and platforms after ATT. Indeed, we find comparable effect sizes on revenue and, as with

several recent papers in the literature on the economic effects of privacy protection measures,

similarly find that the negative effects are larger for smaller firms (Korganbekova & Zuber,

2023), as summarized in Dubé et al., 2024.

In contemporaneous work, Cecere and Lemaire (2023) also study the effect of ATT on

predicted, aggregated ad outcomes and find that ATT reduced targeting efficiency on Meta.
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We complement this work by using platform-observed advertising data to similarly find a

reduction in targeting efficiency and use our revenue data to quantify the downstream eco-

nomic costs of reduced targeting efficiency. Another contemporaneous paper is Deisenroth

et al. (2024), who study the industry-level effects of ATT, highlighting impacts on market

entry/exit and producer prices for industries with higher exposure to ATT. We complement

this work by using more granular firm-level data that provides information on advertising

spending across all major online advertising platforms, not just Meta, directly observe firm

revenue, and focus specifically on e-commerce retailers rather than broader cross-industry

comparisons. Several other papers (Cheyre et al., 2023; Kesler, 2022; Kollnig et al., 2022;

Kraft et al., 2023; Li & Tsai, 2022) also study the impact of ATT, but largely focus on

the supply-side response of iOS applications to the regulation. These papers find that ATT

reduced app downloads and the incentives to develop new applications and that some appli-

cations shifted from relying on advertising revenues to charging for their apps. We comple-

ment these papers by studying the effect on the advertisers themselves – as opposed to the

application’s advertising revenues.

2 Data and Context

2.1 Background on App Tracking Transparency

Apple announced in late 2020 that its new mobile operating system, iOS 14.5, would be

rolled out the following year with a feature prompting users to explicitly consent to tracking

by each app. This feature officially launched on April 25, 2021.8 Before this update, app

publishers had access to an “identifier for advertisers” (IDFA), which was available by default

on Apple devices. The update removed default access to this and instead prompted users,

“Allow [app name] to track your activity across other companies’ apps and websites?” (see

Figure 1). For users selecting “Ask App Not To Track,” the app can no longer use tracking

8https://techcrunch.com/2020/06/22/apple-ios-14-ad-tracking/
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to observe what those users did after leaving the app.9

Figure 1: ATT Data Sharing Prompt

The IDFA had two primary uses for mobile display advertising via platforms such as

Meta. First, it provided a view of consumer activity across applications, which could serve

as an input for targeting. Second, it enabled Meta to link conversions to advertisements

more easily.10 If a consumer opts out through ATT, however, Meta is unable to link ad

impressions or clicks to purchases. This also means that Meta is limited in its ability to

accurately report conversions to firms. Indeed, following ATT, Meta attempted to mitigate

the impact by transitioning from deterministic to probabilistic attribution models, such

as Aggregated Event Measurement, where they replaced actual observed conversions with

“modeled” conversions for users that opted out.11 Thus, both the loss in off-platform data

and conversion measurement issues contribute to an overall degradation in targeting by

reducing the data observed by firms (Johnson et al., 2022; Runge & Seufert, 2021).

9Unlike other privacy protection measures such as the GDPR, there were neither compliance issues (Gan-
glmair et al., 2023) nor heterogeneity in the design of the opt-in prompt (Utz et al., 2019) as a requirement
for remaining on the App Store was to include the prompt provided by Apple.

10Effective targeting depends not only on the firm’s targeting criteria but also on Meta optimizing within
those criteria to identify individuals most likely to convert while the campaign is active (see https://www.
facebook.com/business/help/950694752295474 for details).

11Campaigns targeting non-impacted operating systems remained unchanged, but, if a campaign targeted
iOS users, then Meta would change the recommended setup and targeting for the overall campaign. See
https://www.facebook.com/business/help/331612538028890?id=428636648170202 for the full details.
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2.2 Data Overview

We use detailed data on advertising and revenues for thousands of firms for our analyses.

These data come from two distinct sources, both of which contain granular data from a set

of firms that opt into our data providers for the purpose of analytics.

The first data source we denote as the advertising dataset, which comes from an anony-

mous advertising analytics provider, and provides granular data on Meta, Google, and Tik-

Tok advertising spending and performance for 1,221 firms. The second data source we denote

as the revenue dataset, which comes from Grips Intelligence and contains first-party Google

Analytics traffic and revenue data for 773 firms across the globe at the firm-device-OS level.

In the next two subsections, we provide detailed information on each dataset. We specify

which data are used in each analysis in relevant table or figure notes.

2.2.1 Advertising Dataset (Anonymous Analytics Provider)

The advertising dataset contains weekly firm performance data for a separate set of firms.

These firms, whose identities are anonymized, contract with the data provider and share

their relevant performance data from Meta, Google, and TikTok. For each of the advertising

platforms, we observe the total amount of dollars (spend), the number of times the advertise-

ments were seen (impressions) and clicked on (clicks), and the total number of conversions

associated with the advertising campaign (conversions). The measurement of the first three

variables (spend, impressions, clicks) is not affected by ATT; they are measured accurately

and consistently before and after ATT. However, conversions measurement is potentially

affected by ATT as this is typically collected through a pixel that the firm embeds within

its website or application that requires a consistent identifier across the platform of interest

and the third-party website/app.12 Within each advertising platform, we observe these data

at different levels of granularity. For Meta, we observe performance broken down based on

12See https://www.facebook.com/business/tools/meta-pixel for more information on the Meta pixel and
https://ads.tiktok.com/help/article/tiktok-pixel?lang=en for more information on the TikTok pixel.
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campaign objectives (e.g., off-platform conversions, on-platform clicks). For Google, we ob-

serve performance broken down based on Google product (e.g., Google Search or Display).

We present a set of summary statistics for the advertising dataset in Table 1, indicating that

the mean online advertising spending is $115,390 per month and that the online advertising

share across different platforms heavily skews towards Meta.

2.2.2 Revenue Data (Grips Intelligence Data)

The revenue dataset consists mostly of classical online retailers in fashion, consumer elec-

tronics, beauty and cosmetics, and general e-commerce retail. Its data are derived from

the firm’s Google Analytics tracking, which relies only on first-party data to track relevant

metrics. As a result, the measurement methodology for this dataset remains consistent and

accurate regardless of ATT implementation. From the available firms, we selected a subset of

variables – transactions, sessions, and revenue – aggregated at the device-operating-system-

traffic-source-day level. The traffic source is determined using last-touch attribution.13

Table 1: Dataset Summary Statistics

Percentile

Dataset Metric Mean 25th 50th 75th
Revenue dataset Revenue ($1,000) 4,896.95 119.65 359.36 1,349.32

iOS share 0.25 0.14 0.24 0.34
Android share 0.21 0.11 0.18 0.29
Mobile share 0.44 0.29 0.45 0.58
Meta share 0.04 0.00 0.01 0.04

Advertising dataset Online ad spend ($1,000) 115.39 7.56 24.92 93.12
Meta Share 0.753 0.581 1.0 1.0

Notes: Revenue figures are reported in U.S. dollars and are computed using the revenue dataset over April 2020-April 2021.
The revenue row presents the summary statistics across firms, where each firm is a single data point represented by its average
monthly revenue. The “share” variables for the revenue dataset each refer to the share of revenue associated with each traffic
source. Advertising statistics are computed using the advertising dataset over September 2020-April 2021. The online ad spend
row presents the summary statistics across firms, where each firm is a single data point represented by its monthly average
online advertising spending. The “Meta share” variable for the advertising data refers to the share of monthly average online
advertising spending on Meta from the set of Meta, Google, and TikTok advertising.

We present firm-month level summary statistics for the revenue dataset during the pre-

ATT period (April 2020 to April 2021) in Table 1. The distribution of monthly revenue

13Last-touch attribution, specifically last-non-direct-touch, assigns conversion credit to the final non-direct
interaction before purchase. For example, if a customer clicks a Meta ad and then converts via an email
link, the email is recorded as the last-touch source.
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exhibits significant right skewness, with a median of $359,000 and a mean of $4.9 million.

For the median firm, iOS sessions generate 25% of revenue compared to 18% from Android.

Meta’s revenue share averages 0.04, though the attribution methodology used to calculate

this measure understates Meta’s true contribution to revenue, as the revenue dataset uses

last-touch attribution with a 30-minute window to assign credit for conversions to advertising

channels. While this short attribution window affects the absolute magnitude of Meta’s

revenue contribution, it does not impact measures of relative platform dependence.14

2.2.3 Data Representativeness

As both datasets contain firms that opt into data sharing, a natural question arises regarding

the set of participating firms and the broader population they represent. In Online Appendix

E, we provide additional details about the incentives driving firms to opt into both the ad-

vertising and revenue datasets. We then benchmark our datasets against three “population-

level” external sources that are minimally affected by firm-side selection: cohort-level public

disclosures from Shopify (a widely used e-commerce platform), data from SimilarWeb (a

provider of web traffic and performance metrics), and data from Kantar-Vivvix (an adver-

tising intelligence company). Each of these external benchmarks is constructed to reflect

a broad cross-section of e-commerce retailers. We compare the variation in firm size and

temporal trends in our datasets to those observed in these external benchmarks.

We find that both datasets include firms spanning a wide range of the e-commerce size

spectrum, although the advertising dataset includes relatively more smaller firms, while the

revenue dataset includes relatively more larger firms. These differences in sample composition

are important for interpretation, which is why we conduct heterogeneous treatment effect

analyses in Section 4 that explicitly examine how ATT’s impact varies with firm size. These

analyses provide transparency about how effects may differ across various segments of the

14As shown in Table 2 of Gordon et al. (2023), one-hour attribution windows tend to significantly under-
state the true incremental impact of advertising. The 30-minute window used in our revenue dataset is even
shorter, likely leading to more severe underestimation.

10



e-commerce industry.

Given these datasets and their respective compositions, our analyses proceed as follows.

First, we use the advertising dataset to assess the impact of ATT on the efficacy of ad

campaigns reliant on off-platform data through a within-firm comparison of off- versus on-

platform ad campaign performance while controlling for unrelated factors (e.g., firm size and

type). Next, we use the advertising dataset to provide evidence of how firms adapted their

strategies in response to these changes. Finally, we analyze the revenue dataset to understand

the downstream consequences of these changes on revenue within the e-commerce sector.

The effect sizes from these two sets of analyses are not directly comparable. The first

component of the analysis quantifies degradation in the effectiveness of the affected forms

of advertising. How these changes translate into firm-level revenue declines depends on the

magnitude of each firm’s reliance on the affected forms of advertising and their ability to

adapt.

3 Impact on Advertising Effectiveness

We use the advertising dataset to investigate the effect of ATT on advertising performance.

Descriptive Evidence on Meta Conversion-Optimized Campaign Performance:

We first examine suggestive evidence of ATT’s impact on the number of conversions and

cost per conversion for conversion-optimized Meta advertisements. We document in Tables

OA1 and OA2 that these campaigns make up 95.7% of spending on Meta advertising within

our sample before ATT.15 We restrict attention to a balanced panel of firms with Meta

advertising spending from September 2020 until October 2022 and estimate the following

specification:

Yit =
∑
t

βt ·Weekt + αi + ϵit (1)

15Here and throughout the rest of the paper, conversion-optimized advertisements refer to campaigns that
are optimizing for conversions, product catalog sales, or sales outcomes.

11



Figure 2: Event Study for Conversions and Cost per Conversion
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(b) Event Study for log(Conversions)

Notes: The figures plot the event study coefficients for log(cost per conversion) on the left
and log(conversions) on the right using specification (1). We note that both of these vari-
ables have measurement issues after ATT. Table A.1 presents the associated aggregate post-
ATT estimates. Standard errors are clustered at the firm level. The red dotted line in
the left figure represents the estimated percentage of iOS devices that updated to iOS 14.5
over time. The first vertical dotted line represents April 25, 2021, when Apple first in-
troduced iOS 14.5. Source: Gupta Media, https://lookerstudio.google.com/u/0/reporting/
3d5dda40-37ea-4b9f-bd91-bb8df8e12620/page/aDUJC?s=kTs6iab AhQ

where αi denotes the firm fixed effects.

Figure 2 plots the estimated βt for each week. Leaving aside the spikes around the holiday

season, it is clear that after ATT the number of conversions drops dramatically and the cost

per conversion increases.16 As suggestive evidence that this increase was caused by ATT,

Figure 2 also plots the fraction of iOS devices that had installed iOS 14.5.17 The gradual

adoption of iOS 14.5 coincides with a gradual increase in the cost per conversion that then

nearly discontinuously increases as Apple nudged a large portion of users to adopt iOS 14.5

in early June, resulting in an overall 73.2% increase (95% CI: 66.9% to 79.7%) in cost per

Meta-observed conversion.

While these results suggest that ATT had a dramatic effect on ad performance, it is

important to note that these outcome variables are subject to measurement issues as a

result of ATT. The observed decrease in conversions is a mixture of both real reductions in

conversions and the degraded ability to link advertisements to conversions. This highlights

16In the remainder of the paper, we show results at a monthly frequency, but we prefer the weekly frequency
for this plot to show how closely outcomes track the adoption of iOS 14.5.

17For better visual clarity, we also provide the adoption as a standalone plot in Figure A.1.
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the challenge that both firms and Meta face after ATT, as accurately attributing conversions

to advertisements plays a key role in measuring performance and learning effective targeting

rules by enabling Meta to “close the loop.” Another limitation of this event study is that it

lacks a control group of unaffected companies, making it difficult to isolate ATT’s impact. For

us to determine whether there were real degradations in targeting caused by the introduction

of ATT, we next exploit the fact that the ability to measure advertising clicks is not affected

by ATT, unlike the ability to measure conversions.

Causal Effect on Conversion-Optimized Meta Advertising: We focus on quantifying

the reduction in the effectiveness of campaigns that rely on off-platform data. To do so, we

conduct a within-firm difference-in-differences analysis, comparing the relative performance

of conversion-optimized to click-optimized advertising campaigns. This is the observational

analog of the experimental comparison conducted in Wernerfelt et al. (2022). Click-optimized

campaigns serve as a reasonable control group because (1) they optimize for the last point

in the customer acquisition lifecycle that the platform can reliably measure after ATT, (2)

they are the most popular campaign objective which can be reliably measured after the

implementation of ATT,18 and (3) clicks are positively correlated with conversions.19

By focusing on a within-firm comparison, we isolate the effect of ATT on the affected

form of advertising while controlling for differences across firms – for instance, their size or

frequency of conversions – that are orthogonal to the treatment effect of interest, as well

as possible adjustments to the targeting algorithm by Meta over time. We consider the

following specification for firm i, advertising campaign objective j, and month t:

Yijt =
∑
t

βt

(
Montht × Tj

)
+ αij + κt + ϵijt (2)

where Tj is an indicator for whether the campaign j is a conversion-optimized campaign, αij

18Table OA1 provides a breakdown of the market shares of different campaign objectives before ATT.
19Table A.2 shows that before ATT clicks and conversions were correlated with each other for both cam-

paign objectives, with the relationship being stronger for conversion-optimized campaigns.
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denotes firm-campaign fixed effects, and κt denotes month fixed effects.

Figure 3: Time-Varying Treatment Effects for Click-Through Rate
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Notes: This figure shows the relative performance of the click-through rates of conversion-
optimized campaigns (which were affected by ATT) compared to click-optimized campaigns (which
were not) over time, using specification (2). It uses data from a balanced panel of firms that used
both types of campaigns pre-ATT in the advertising dataset. Standard errors are clustered at the
firm level. Associated aggregate post-ATT estimates are in Table A.1.

One possible threat to this identification strategy is if firms reallocate their advertising

spending between conversion-optimized campaigns and campaigns optimized for on-platform

objectives. In Appendix Section C.1 we investigate this possibility and find minimal substi-

tution between campaign types. Specifically, off-platform campaigns continued to dominate

advertiser spending on Meta, accounting for 95.7% of total spend before ATT and 95.0%

afterward (Table OA2). Our firm-level analysis shows some substitution on the extensive

margin (i.e., some firms beginning to use on-platform objectives that were not previously

used) but no significant adjustment on the intensive margin (i.e., spending levels across

campaign types). Therefore, to ensure the validity of our approach, we focus our primary

analysis on the subset of firms that spent on both click-optimized and conversion-optimized

campaign objectives before ATT. The stability in campaign mix among these firms provides

evidence against Stable Unit Treatment Value Assumption (SUTVA) violations stemming
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from cross-objective substitution and supports the validity of our within-firm comparison.20

As such, we estimate specification (2) using the click-through rate for firm i and campaign

objective j for each month t as Yijt and on a balanced panel of firms that utilized both

click-optimized and conversion-optimized campaigns pre-ATT.21 Figure 3 shows identical

performance between campaign types before ATT, followed by a sharp decline in click-

through rates for conversion-optimized campaigns after ATT’s introduction. The reduction

in click-through rates is 0.004 for conversion-optimized campaigns, representing a 36.6%

decrease from the baseline rate of 0.011 (95% CI: 18.2% to 54.5%).22 While we cannot

directly characterize the impact of ATT on conversions due to the inability of Meta to

reliably measure this after ATT, column (1) of Table A.2 shows that a 1% increase in pre-

ATT clicks was associated with a 0.61% increase in pre-ATT conversions, suggesting that

the causal reduction in clicks will likely be associated with a decline in conversions. Indeed,

the decline in click-through rates may understate the true decline in conversions because

ATT could also degrade the quality of clicks – ATT not only reduces the ability to measure

conversions but also impacts targeting quality, which could affect the alignment between

the clicked ad and consumer purchase intent. This evidence implies that ATT significantly

degraded the effectiveness of conversion-optimized advertising on Meta.

3.1 Budget Reallocation

Given that ATT negatively impacted the effectiveness of Meta advertising, it is natural to

ask whether and how firms adapted by reallocating their advertising spend, as this could

influence the overall effect on revenue. To explore this, we focus on Google, the other

20This stability in campaign mix suggests that any overall changes in Meta advertising spending represent
level shifts across all campaign types rather than a selective reallocation, further supporting the validity of
our comparison.

21This selection criterion yields a subset of 44.9% of firms from Figure 2, with Table A.4 showing similar
event study impacts on conversion-optimized ads.

22An additional possible concern is that this analysis conditions on advertisers that continued to purchase
advertising on Meta. We estimate this same specification instead conditioning on the set of advertisers that
have positive advertising spending on Meta only in the pre-ATT period, allowing for possible exit off Meta.
We report the results in Figure A.2 showing that the estimates remain quantitatively similar.
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prominent online advertising platform observed in our data. Although our measures of

advertising performance changes on Google are not as precise as those for Meta, we show in

Online Appendix C.2 that conversions across various Google services do not exhibit the same

abrupt decline post-ATT as observed in Figure 2. This suggests that firms could potentially

mitigate the impact of ATT by shifting their advertising spending to Google.

Figure 4: Event Study of Online Advertising Spending
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(a) Event Study for Meta Advertising Spending Share
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(b) Event Study for Meta Advertising Spending
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(c) Event Study for Google Advertising Spending

Notes: Panel (a) represents event study estimates for Meta online advertising spending share,
defined as spending on Meta advertising as a proportion of advertising spending on Meta, Google,
and TikTok, using specification (1). Table A.3 presents the associated aggregate post-ATT esti-
mates. Panels (b) and (c) consider the dependent variable as the log of online advertising spending
for Meta and Google, respectively. Results use a balanced panel of firms with non-zero online
advertising spending in the advertising dataset. Standard errors are clustered at the firm level.

Measuring the equilibrium effects of ATT on the advertising market is challenging as ATT
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induces an exogenous reduction in quality for targeted advertising and thus simultaneously

impacts quality, quantity, and prices. As our primary goal is to understand the downstream

impact on revenue, we focus primarily on reduced-form reallocations to the online adver-

tising platforms of interest since this may impact downstream outcomes. Nonetheless, we

specify a micro-founded model of advertising allocations in Online Appendix F that makes a

clear prediction – relative demand for Meta should decrease compared to Google – and also

highlights the theoretical ambiguity of other key market outcomes in equilibrium.

To empirically validate this, we compute each firm’s online advertising spending share

on Meta, calculated as their advertising spending on Meta in a month divided by their

total advertising spending on Meta, Google, and TikTok during the same month. We then

estimate specification (1) and present the estimates in Figure 4. They show little change in

market share before the onset of ATT and a gradual decrease in the share of Meta after ATT.

Figures 4b and 4c present the event study estimates for the log of advertising spending on

Google and Meta, respectively, which show that this result arises from a mixture of continued

increase in Google advertising spending and a drop off in Meta advertising spending.23 The

mean market share for Meta ads was 0.75 in the baseline period. The average decline across

the post-treatment period was 0.014 (SE: 0.003) or 1.4 percentage points (95% CI: 0.8 to 2.0

percentage points), while by the end of our sample period this effect grew to approximately

3.3 percentage points (4.4% reduction), as shown in Figure 4.

While other market factors could influence platform-specific advertising spending during

this period, several aspects of our analysis mitigate these concerns and suggest that this was a

result of ATT. First, the timing of the divergence aligns precisely with ATT implementation.

Second, the pre-ATT parallel trends in spending across platforms suggest comparable growth

trajectories absent intervention. Third, in Online Appendix C.2, we conduct an across-firm

difference-in-differences analysis to show that this reallocation was more pronounced for firms

with higher pre-ATT Meta dependence.

23In Online Appendix C.2 we present additional details and analyses for this, as well as show that a similar
pattern holds for two relevant quantity variables: clicks and impressions.
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These results indicate a meaningful reallocation of advertising spending, suggesting that

to characterize ATT’s full impact on these firms, we need to understand the impact on total

revenue. We turn to this in the next section.

4 Impact on Firm Revenues

This section contains our main results, in which we estimate the impact of ATT on firm

revenues using the revenue dataset. Our primary empirical strategy employs an across-firm

difference-in-differences (DiD) design to compare pre- and post-ATT revenue for firms dif-

fering in their vulnerability to ATT. We consider two complementary exposure metrics: the

firm’s pre-ATT revenue share attributable to Meta traffic or to iOS devices. While the for-

mer follows naturally from Section 3 (degraded conversion-optimization on Meta), the latter

captures vulnerability across all channels on devices directly affected by ATT. Because iOS

share is based on device-level tags, it is measured more accurately than Meta attribution,

which relies on 30-minute last-touch windows and systematically under-counts Meta’s true

contribution (see Section 2). These two measures are only weakly correlated,24 allowing us

to triangulate ATT’s impact from two distinct angles.

To measure these forms of dependence, we calculate the average share of revenue coming

from Facebook/Instagram sessions or iOS devices, respectively, over the one-year period

before ATT’s introduction (April 2020 to April 2021) for each firm. Recall from Table 1 that

this share is, for the average firm in our sample, 0.04 for Meta and 0.25 for iOS.

There are two key challenges in measuring the causal effect on revenue: most firms are at

least partially treated under either measure of exposure and reported exposure potentially

has measurement error. As mentioned above, we expect reported Meta dependence to be

systematically lower than true dependence on Meta across firms, while reported iOS exposure

24While iOS dependence and Meta dependence are correlated, the correlation is relatively weak – the ϕ
coefficient is 0.17 – as there is substantial variation in which firms are labeled as treated under the two
definitions. In all, 29% of firms are considered treated under both definitions, 42% are considered treated
under only one, and 29% are considered treated under neither.
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is likely to have significantly less systematic bias. Unlike classical measurement error with

random variation that typically attenuates treatment effect estimates, the systematic under-

attribution of Meta exposure is a directional bias.

Figure 5: Time-Varying Treatment Effects for Revenue
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Notes: The estimates present the time-varying treatment effects for log(total revenue) using spec-
ification (3), with data from the revenue dataset. The treatment indicator is a dummy variable
equal to 1 if the firm-level pre-ATT share of revenue from Meta traffic is above the median, and 0
otherwise. Standard errors are clustered at the firm-level.

Rather than relying on a single estimation approach, we employ two estimation methods,
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with different strengths and weaknesses, using the two treatment variables to construct a

range of plausible estimates for ATT’s impact. First, we use a median split of exposure

to classify firms into ‘high exposure’ (treatment) and ‘low exposure’ (control) groups. The

median split approach provides a straightforward interpretation and shows consistent pat-

terns across treatment variables. Second, we consider an alternative specification following

de Chaisemartin et al., 2024, the heterogeneous adoption design (HAD) estimator, which

measures the causal effect of an additional unit of measured exposure. The HAD estimator

offers more generalizable, policy-relevant interpretations. However, it produces estimates

with substantially wider confidence intervals, making precise interpretation more challeng-

ing.25

Relative Dependence Treatment We first consider the specification that relies on mea-

suring exposure via relative dependence by classifying treated and control units based on

median exposure levels. Using Meta (iOS) attributable revenue as the measure of exposure

this results in a treatment group where 8.17% (36.51%) of their pre-ATT revenue is at-

tributed to Meta (iOS) traffic, compared to 0.42% (11.84%) for the control group. To assess

this, we estimate the following specification for results in this section:

Yit =
∑
t

βt

(
Montht × Ti

)
+ αi + κt + ϵit, (3)

where Ti indicates whether they are more vulnerable to ATT, αi denotes firm fixed effects,

and κt denotes month fixed effects. We also run a robustness check in which we include

category-month fixed effects. As before, we cluster our standard errors at the firm level.

Results for the primary specification are shown in Figure 5 with Figures 5a and 5b display-

ing the time-varying treatment effects for Meta and iOS treatment assignment, respectively.

25In Monte Carlo simulations designed to mimic the empirical setting of our study, we find that the width
of the empirical 95% confidence interval of the HAD estimator is approximately three times larger than that
of the median-split estimator under the same data generation process. Simulation results are available upon
request.
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Under both measures, estimated monthly treatment effects for revenue remain statistically

insignificant during the pre-ATT period, confirming parallel trends. Following ATT imple-

mentation, we observe a gradual decline in revenue for treated firms, with point estimates

becoming statistically significant approximately 4 months after ATT’s introduction. This

is again consistent with the gradual timing of adoption of iOS 14.5 among consumers doc-

umented in Figure 2. These results suggest that the rollout of ATT substantially lowered

revenue of the e-commerce firms most exposed to it. Notably, despite the relatively weak

correlation between these two treatment measures, we observe remarkably consistent effect

estimates over time across measures. This is supportive of the notion that the estimated

revenue effects reflect the true impact of ATT and are not artifacts of a particular exposure

metric.

Table 2 provides the aggregated coefficient estimates for the Meta and iOS dependence

measures. The coefficient estimates in columns (1) and (5) suggest a decrease in revenue

of 37.1% (95% CI: 12.4% to 55.1%) for more Meta-dependent firms relative to less Meta-

dependent firms and of 40.6% (95% CI: 18.0% to 57.1%) for more iOS-dependent firms

relative to less iOS-dependent firms.26 We focus our discussion on the Meta dependence

measure results for the rest of this discussion as the results are consistent across both spec-

ifications. Column (2) reveals that the negative revenue effect strengthens over time, with

a small and statistically insignificant effect in the initial three months post-implementation

(−0.138, or −12.9% in percentage terms), followed by a larger and statistically significant

effect in the subsequent months (−0.499, or −39.3% in percentage terms). This pattern

aligns with the gradual adoption of iOS 14.5, as shown in Figure 2, where the ATT opt-out

rate increased steadily and then jumps in June 2021, when Apple began actively prompting

users to update their devices through notifications and automatic update settings. Columns

(3) and (4) show that this effect is driven by small firms, which are defined as those with

below-median pre-ATT average monthly revenue.27 Additional analyses in Table A.5 in the

26Marginal effects are computed by exp(β)− 1.
27We plot time-varying treatment effects separately for small and large firms in Figures A.4a and A.4b,
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Online Appendix show that including category-by-month fixed effects yields similar results,

with a 32.7% decline for Meta-dependent firms and a 29.7% decline for iOS-dependent firms.

We include this as a specification check while noting that category and treatment may be

correlated, as some categories are inherently more reliant on targeted digital advertising than

others. The same table also shows that the number of transactions declined by approximately

21% under both treatment definitions.

Table 2: Primary Revenue Estimates

Dependent variable: log(Revenue)

Meta Treatment iOS Treatment

(1) (2) (3) (4) (5) (6) (7) (8)
All All Small Large All All Small Large
firms firms firms firms firms firms firms firms

Aftert × Treated -0.463∗∗∗ -1.132∗∗∗ 0.158 -0.522∗∗∗ -0.999∗∗∗ 0.079
(0.165) (0.302) (0.121) (0.165) (0.290) (0.116)

0− 3 months × Treated -0.138 0.040
(0.151) (0.103)

4+ months × Treated -0.499∗∗∗ -0.483∗∗∗

(0.171) (0.159)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 24868 24868 12468 12400 24868 24868 12468 12400

R2 0.73 0.73 0.58 0.67 0.73 0.73 0.58 0.67

Marginal effects (%) -37.06%
-12.89%
-39.29%

-67.76% 17.12% -40.67%
4.08%
-38.31%

-63.18% 8.22%

Treatment share treated (%) 8.17% 8.17% 10.22% 5.96% 36.51% 36.51% 35.10% 37.73%

Treatment share not treated (%) 0.42% 0.42% 0.34% 0.49% 11.84% 11.84% 11.35% 12.42%
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: The treatment indicator is a dummy variable equal to 1 if the firm-level share of revenue from the respective traffic source
(Meta or iOS) is above the median, 0 otherwise. All columns use log(revenue) as the dependent variable. Columns present estimated
average treatment effect coefficients using variants of specification (3), replacing monthly dynamic treatment effects with three speci-
fications: (i) a post-treatment indicator (Aftert × Treated), (ii) an indicator for the first 3 months after treatment (0 − 3 months ×
Treated), and (iii) an indicator for 4+ months after treatment (4+ months × Treated), with data from the revenue dataset. Marginal
effects are computed by exp(β)− 1. Standard errors are clustered at the firm level.

A limitation of this analysis is the absence of a true control group, as virtually all firms

have some exposure to ATT through iOS users or Meta advertising. To address this concern,

we supplement our main analysis with two approaches. First, we implement quartile-based

comparisons to examine how effects vary across different levels of exposure intensity. These

respectively, and for transactions in Figure A.3.
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results are shown in Table A.6. For the iOS treatment variable, we find that increasing

levels of exposure are associated with increasing effect sizes and that the magnitudes of

effects are consistent with the median split implementation. For the Meta treatment, we

find large effects for the second through fourth quartile of exposure. The quartile coefficients

are somewhat imprecisely estimated but suggest large effects are present beginning with the

second quartile of exposure.

Continuous treatment Next, we consider a complementary approach that measures the

causal effect of an additional unit of dependence on revenue. To do so, we follow de Chaise-

martin et al. (2024), who developed an estimator for settings where all units are treated but

with different intensities (which we denote the HAD estimator). This approach uses “quasi-

stayers” (units with minimal treatment changes) and provides estimates of treatment effects

that are robust to heterogeneous adoption. Additional discussion of this method is provided

in Appendix B. Results are summarized in Table 3 for both the iOS and Meta treatment.

The coefficients suggest that an additional 1 percentage point increase in revenue attributed

to Meta advertising is associated with a roughly 1.05% decrease in revenue after ATT went

into effect, and that an additional 1 percentage point increase in revenue attributed to iOS

users is associated with a roughly .75% decrease in revenue.

Table 3: HAD Estimates for iOS and Meta Treatments

iOS Treatment Meta Treatment

After × Treatment -0.751∗∗∗ -1.048∗∗∗

(0.174) (0.202)

Notes: Results show summarized estimates from the de Chaisemartin et al. (2024) HAD estimator that aggregate
across all post-periods.

To provide a comparison to our median split difference-in-differences estimates, we can

compare the magnitudes implied by these coefficients applied to the difference in treatment

levels between the above versus below median firms. The difference in Meta exposure between

treatment and control groups is approximately 7.75 percentage points (8.17% vs 0.42%),
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which would imply an effect of 8.1% using these estimates (95% CI: -11.2% to -5.1%). Using

the same calculations under the iOS treatment variable implies an 18.5% revenue reduction

(95% CI: -26.9% to -10.1%). These estimates are smaller than the treatment effects under

the median split estimator of 37.1% and 40.6% under the Meta and iOS treatment variables,

respectively, although the gap is noticeably smaller and statistically insignificant (p > .10)

under the iOS treatment variable.

Several factors could explain these results: (1) last-touch attribution with 30-minute

windows understates firms’ true reliance on Meta advertising, meaning actual exposure dif-

ferences between treatment and control groups are likely larger than measured; (2) the HAD

estimator exhibits lower statistical precision in our setting, introducing variability into its

point estimates for a given realization of the data; (3) measurement error may affect the

HAD estimator differently than the differences-in-differences estimator.28 We note that the

iOS-dependence specification, where we expect less measurement error in the measure of de-

pendence, has a more similar treatment effect magnitude to the median split estimator, with

differences in treatment effect estimates that are statistically insignificant from one another.

This is consistent with the notion that measurement error in the treatment variable may

affect our estimation approaches differently, though the exact mechanisms and magnitudes

of these effects are difficult to quantify precisely. We also note that all approaches yield

consistent, significantly negative inferred treatment effects, which provides robust evidence

that ATT had significantly negative impacts on e-commerce firms’ revenues, regardless of

the specific methodological approach that is employed.

Discussion These findings indicate that privacy protection measures have substantially

harmed some e-commerce firms, with effect estimates across all the considered specifications

that are larger than what one might expect from the direct revenue share attributed to Meta

28This influences the estimated coefficient since the systematic under-estimation of exposure means that
some units with truly low treatment exposure are spuriously reported to have no exposure and are thus
incorrectly classified as control units. This leads to a control group that is a mixture of units with zero
exposure and those with minimal exposure, biasing the estimated treatment effects downwards.
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advertising or iOS users. Several factors likely contribute to these large effects:

1. Reliance on Meta in the revenue dataset is measured using last-touch attribution with

a 30-minute attribution window, which, as noted in Gordon et al. (2023), is likely to

significantly underestimate firms’ true underlying reliance on Meta advertising.

2. These losses represent foregone growth rather than absolute revenue declines: Figure

OA4 in Online Appendix D.1 shows that more Meta-reliant firms experience slower

growth compared to less reliant firms, not actual revenue contraction. Consistent with

this, auxiliary analyses of a secondary revenue dataset in Online Appendix D.2 indicates

that reduction in new customer orders is the driving force of revenue reductions.

3. Losing an important customer acquisition channel not only depresses short-term sales,

it also depresses long-term sales through lower subsequent repeat purchases, less word

of mouth, and so on.29

4. Auxiliary analysis from Online Appendix D.2 suggests a small fraction of the revenue

decline may be attributable to relatively more affected firms decreasing total advertis-

ing spending in response to ATT.

5. Cross-device impacts occur as ATT’s effects spill over to all devices, not just iOS.

This happens through algorithmic learning spillovers (targeting models becoming less

effective when trained on incomplete data) and identity linkage issues (inability to

connect user activity across devices). These informational externalities are consistent

with recent empirical work by Aridor et al. (2023) and Lin and Misra (2022) as well as

a growing theoretical literature (Acemoglu et al., 2022; Bergemann et al., 2022; Choi

et al., 2019; Miklós-Thal et al., 2024).

While we identify these specific mechanisms, we acknowledge that additional factors be-

yond ATT also influence revenue outcomes, contributing to uncertainty in our estimates. Col-

29We also find negative, but imprecisely estimated, point estimates on orders from repeat customers in
the analysis of an auxiliary revenue dataset in Online Appendix D.2.
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lectively, these findings demonstrate how privacy protection measures can have far-reaching

economic consequences beyond their direct implementation targets.

5 Conclusion

As companies and policymakers consider extending or implementing new privacy policies

limiting firms’ ability to target consumers online, it is important that they be fully informed

about the economic costs to firms that may result from these regulations. In this paper,

we show that ATT significantly degraded the performance of Meta advertising and, subse-

quently, that firms more dependent on Meta experienced a substantial relative reduction in

revenue, which was primarily borne by small firms.

This paper has several policy and managerial takeaways. Our estimates suggest large eco-

nomic costs of opt-in privacy protection measures. While there are positive consumer welfare

gains from the added privacy protections, the magnitude of the losses threatens the viability

of firms, such as direct-to-consumer firms, that rely on targeted social media advertising as

their primary source of customer acquisition. As such, there could be a countervailing force

on consumer welfare if the revenue losses are large enough to induce substantial exit and to

deter entry of these firms into product markets. These findings highlight the importance of

developing balanced approaches to privacy protection that protects consumer rights while

also supporting the competitiveness of small businesses in the digital economy.
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Appendix A Omitted Tables and Figures

Figure A.1: ATT Adoption Over Time
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Notes: Figure represents the estimated percentage of iOS devices that updated to iOS 14.5 over
time. The first vertical dotted line represents April 25, 2021, when Apple first introduced iOS 14.5.
The second vertical dotted line represents June 1 2021, when Apple began encouraging iOS users to
update their operating systems. Source: Gupta Media, https://lookerstudio.google.com/u/0/reporting/
3d5dda40-37ea-4b9f-bd91-bb8df8e12620/page/aDUJC?s=kTs6iab AhQ

Table A.1: Difference-in-Differences Estimates for CTR

Dependent variable:

(1) (2)

Click-Through Rate

Aftert × Treated −0.004∗∗∗ −0.004∗∗∗

(0.001) (0.001)

Month FE Yes Yes
Firm-Campaign FE No Yes

Observations 18,427 18,427
R2 0.666 0.483

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: This table shows the relative performance of the click-through rates of conversion-optimized
campaigns (which were affected by ATT) compared to click-optimized campaigns (which were not)
over time. This is the static analog to specification (2), replacing time-varying treatment effects
with a single post-treatment indicator (Aftert × Treated) to estimate an average treatment effect
over the post-treatment period. It uses data from a balanced panel of firms that used both types
of campaigns pre-ATT in the advertising dataset. Standard errors are clustered at the firm level.
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Figure A.2: Time-Varying Treatment Effects for Click-Through Rate (Robustness)
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Notes: This figure shows the relative performance of the click-through rates of conversion-
optimized campaigns (which were affected by ATT) compared to click-optimized campaigns (which
were not) over time, using specification (2). It uses data from firms that used both types of cam-
paigns pre-ATT in the advertising dataset. It only considers a balanced panel of firms with positive
Meta advertising spending in the pre-ATT period. Standard errors are clustered at the firm level.

Table A.2: Correlational Relationship between Clicks and Conversions on Meta

Dependent variable:

(1) (2)

log(1 + Conversionsijt)

log(1 + Clicksijt) 0.252∗∗∗ 0.195∗∗∗

(0.017) (0.013)

log(1 + Clicksijt)× 1(j is Conversion-Optimized Campaign) 0.649∗∗∗ 0.413∗∗∗

(0.031) (0.045)

Firm-Campaign FE No Yes
Week FE No Yes

Observations 7,840 7,840
R2 0.762 0.951

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: All results use the advertising dataset, using a balanced panel of firms who spend on both click-
optimized and conversion-optimized campaigns on Meta. We only consider pre-ATT time period, due to
the measurement issues associated with conversions after ATT. We estimate the following specification:

log(1 + conversionsijt) = β
(
log(1 + clicksijt) × 1(j is Conversion-Optimized Campaign)

)
+ αij + κt + ϵijt.

Standard errors are clustered at the firm level.
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Table A.3: Event Study Estimates for Meta Advertising Performance

Dependent variable:

(1) (2) (3)

log(Cost per conversion) log(Conversions) Meta online spend share

Aftert 0.549∗∗∗ −0.302∗∗∗ −0.014∗∗∗

(0.019) (0.032) (0.003)

Firm FE Yes Yes Yes

Observations 61,091 61,091 31,746
R2 0.837 0.855 0.931
Marginal effects 73.15% -26.07% -

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: All results use the advertising dataset. Aftert is an indicator for whether the time is after
ATT’s introduction. The specification used is the static analog to specification (1), replacing time-
varying treatment effects with a single post-treatment indicator (Aftert). The dependent variables
are log(cost per conversion), log(conversions), and online spend share for Meta ads, equal to ad spend
on Meta as a proportion of ad spend on Meta, TikTok and Google. Columns (1) and (2) are esti-
mated over the sample of firms that have a balanced panel in terms of Meta advertising spend, while
column (3) is estimated over the sample of firms with a balanced panel of any online advertising
spend. We note that the dependent variables in columns (1) and (2) have measurement issues after
ATT. Marginal effects are computed by exp(β)− 1. Standard errors are clustered at the firm level.
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Table A.4: Event Study Estimates for Meta Advertising Performance (Robustness)

Dependent variable:

(1) (2) (3) (4)
log(Conversions) log(Cost per conversion)

Both campaigns Only conversions Both campaigns Only conversions

Aftert −0.361∗∗∗ −0.254∗∗∗ 0.559∗∗∗ 0.539∗∗∗

(0.043) (0.048) (0.026) (0.027)
Firm FE Yes Yes Yes Yes

Observations 31,216 29,875 31,216 29,875
R2 0.839 0.861 0.819 0.848
Marginal effects −30.30% −22.43% 74.89% 71.42%

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Results use the advertising dataset and we estimate the event study specification (1). The
first two columns consider log(conversions) as the dependent variable, and the last two columns consider
log(cost per conversion). The first and third columns are estimated over the sample of firms that use
both click-optimized and conversion-optimized campaigns before ATT. The second and fourth columns
are estimated over the sample of firms that only use conversion-optimized campaigns. Marginal effects
are computed by exp(β)− 1. The marginal effects associated with the point estimated presented in col-
umn (3) are 4.08% for the first 3 months and -38.31% for 4+ months after treatment. Standard errors
are clustered at the firm level.

Table A.5: Additional Revenue Estimates

Dependent variable:

log(Revenue) with Category × Month FE log(Transactions)

(1) (2) (3) (4)
Meta Treatment iOS Treatment Meta Treatment iOS Treatment

Aftert × Treated -0.396∗∗ -0.352∗∗ -0.241∗∗ -0.237∗∗

(0.180) (0.167) (0.100) (0.100)

Firm FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Category × Month FE Yes Yes No No

Observations 24868 24868 24868 24868

R2 0.74 0.74 0.83 0.83

Marginal effects (%) -32.70% -29.67% -21.42% -21.10%

Treatment share treated (%) 8.17% 36.51% 8.17% 36.51%

Treatment share not treated (%) 0.42% 11.84% 0.42% 11.84%
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: The treatment indicator is a dummy variable equal to 1 if the firm-level share of revenue from the respective traffic
source (Meta or iOS) is above the median, 0 otherwise. Columns (1)-(2) use log(revenue) as the dependent variable and include
category-by-month fixed effects, where “category” refers to the firm category labels in the revenue data, such as “Lifestyle,”
“Home/Garden,” and “Health.” Columns (3)-(4) use log(transactions) as the dependent variable. Marginal effects are com-
puted by exp(β)− 1. Standard errors are clustered at the firm level.
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Figure A.3: Time-Varying Estimates for Transactions (Meta Share Treatment)
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Notes: Results use the revenue dataset. The estimates present the time-varying treatment effects
for log(Transactions) using specification (3). The treatment indicator is a dummy variable equal
to 1 if the firm-level pre-ATT share of revenue from Meta traffic is above the median, 0 otherwise.
Standard errors are clustered at the firm level.

Figure A.4: Time-Varying Estimates for Small and Large Firms (Meta Share Treatment)
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Notes: Results use the revenue dataset. The estimates present the time-varying treatment effects
using specification (3) for log(total revenue) across firms whose pre-ATT revenue was below the
median (Panel a) and above the median (Panel b). The treatment indicator is a dummy if the firm-
level pre-ATT share of revenue from Meta traffic is above the median of the full sample, including
both large and small firms, and 0 otherwise. Standard errors are clustered at the firm level.
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Table A.6: Revenue Estimates Robustness: Quartile Treatment Split

(1) (2)
iOS Treatment FB Treatment

Aftert × 2nd Treatment Quartile -0.426 -1.190***
(0.279) (0.271)

Aftert × 3rd Treatment Quartile -0.591** -1.218***
(0.273) (0.273)

Aftert × 4th Treatment Quartile -0.632** -0.890***
(0.253) (0.299)

Firm FE Yes Yes
Month FE Yes Yes

Observations 24868 24868
R2 0.73 0.73

Notes: Results show estimated revenue effects using the treatment definitions based on measures of ATT
exposure constructed from pre-ATT revenue shares attributed to iOS users and Meta advertising. The
excluded category in both columns is the lowest quartile (least exposed to ATT). Standard errors are clustered
at the firm level.
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Appendix B Revenue Analysis: Continuous Treatment

Effects Analysis Using Quasi-Stayers

We follow the approach proposed in de Chaisemartin et al. (2024), which is designed for

empirical settings in which all units receive treatment, but with varying intensities. The

standard TWFE estimator with continuous treatment can produce misleading results when

treatment effects are heterogeneous and all units are treated with different doses. de Chaise-

martin et al. (2024) suggest a procedure for designs with “quasi-stayers” (units with minimal

treatment exposure) that involves testing for parallel trends in pre-treatment periods, and

testing for whether treatment effects are mean-independent of treatment intensity using

the Yatchew test. If neither test is rejected, their Heterogeneous Adoption Design (HAD)

estimator and the standard TWFE estimator are expected to yield consistent results.

Panel A of Tables B.1 and B.2 present the results of the pre-ATT placebo tests for

our Meta and iOS treatment variables, respectively, while the results of the Yatchew tests

for mean independence are provided in the notes accompanying these tables. Under both

treatment definitions, the pre-trend tests show no significant violations of the parallel trends

assumption in any pre-treatment periods, suggesting that the parallel trends assumption is

plausible in our setting.

The Yatchew tests for mean independence yield no significant p-values (all above 0.15

using iOS treatment definition and 0.22 using the Meta treatment definition) across all post-

treatment periods. This provides no evidence against the assumption that treatment effects

are mean-independent of treatment intensity.
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Table B.1: Robustness: HAD Tests and
Estimates: Meta Treatment

Panel A: Pre-ATT Placebo Tests

Period Estimate SE 95% CI

Month -12 1.09 1.25 [-2.96, 1.93]
Month -11 1.53 1.31 [-2.16, 5.29]
Month -10 1.42 1.54 [-1.22, 4.82]
Month -9 1.15 0.99 [-1.70, 2.74]
Month -8 1.15 0.99 [-2.57, 1.30]
Month -7 0.49 0.98 [-2.34, 1.50]
Month -6 0.40 0.90 [-1.65, 1.81]
Month -5 0.57 0.84 [-1.52, 1.78]
Month -4 0.56 0.81 [-1.58, 1.61]
Month -3 0.71 0.81 [-1.84, 1.36]
Month -2 0.70 0.81 [-1.34, 1.84]
Month -1 0.70 0.84 [-1.54, 1.76]

Panel B: Post-ATT Effect Estimates

Period Estimate SE 95% CI

Month 1 -0.74 1.29 [-2.16, 2.89]
Month 2 -1.31 1.28 [-3.15, 1.87]
Month 3 -0.71 1.13 [-3.01, 1.43]
Month 4 -0.92 0.84 [-2.49, 0.80]
Month 5 -1.03 0.85 [-2.39, 0.94]
Month 6 -1.23 0.89 [-2.19, 1.29]
Month 7 -0.90 0.79 [-1.66, 1.46]
Month 8 -0.97 0.80 [-1.71, 1.42]
Month 9 -0.96 0.76 [-1.83, 1.15]
Month 10 -1.15 0.71 [-2.08, 0.71]
Month 11 -1.26 0.71 [-2.14, 0.64]
Month 12 -1.17 0.69 [-1.94, 0.77]
Month 13 -1.22 0.69 [-2.07, 0.62]
Month 14 -1.16 0.68 [-2.01, 0.67]
Month 15 -1.08 0.68 [-1.96, 0.69]
Month 16 -1.13 0.69 [-2.03, 0.67]
Month 17 -1.20 0.69 [-2.13, 0.59]
Month 18 -1.12 0.69 [-2.04, 0.67]
Month 19 -0.95 0.70 [-1.78, 0.95]
Month 20 -1.03 0.70 [-1.85, 0.90]

Notes: This table presents HAD estimates for Meta treatment effects following de Chaisemartin et al. (2024).
Panel A shows shows placebo tests for pre-treatment periods. Panel B monthly treatment effect estimates after ATT
implementation. All p-values from the Heteroskedasticity-robust Yatchew Test are greater than 0.22, indicating
no significant violations of model assumptions. Sample sizes range from 621-626 observations. 95% confidence
intervals are shown in brackets.
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Table B.2: Robustness: HAD Tests and
Estimates: iOS Treatment

Panel A: Pre-ATT Placebo Tests

Period Estimate SE 95% CI

Month -12 1.35 1.41 [-0.91, 4.63]
Month -11 1.21 1.09 [-0.24, 4.03]
Month -10 1.55 0.87 [-0.09, 3.32]
Month -9 1.52 0.83 [-0.06, 3.30]
Month -8 0.68 0.70 [-0.53, 2.21]
Month -7 0.56 0.68 [-0.51, 2.15]
Month -6 0.79 0.66 [-0.49, 2.09]
Month -5 0.69 0.64 [-0.47, 2.04]
Month -4 0.75 0.64 [-0.35, 2.17]
Month -3 0.77 0.65 [-0.23, 2.31]
Month -2 0.83 0.60 [-0.25, 2.12]
Month -1 0.72 0.60 [-0.38, 1.97]

Panel B: Post-ATT Effect Estimates

Period Estimate SE 95% CI

Month 1 -0.65 0.77 [-2.33, 0.71]
Month 2 -0.88 0.65 [-2.19, 0.35]
Month 3 -0.66 0.60 [-1.92, 0.42]
Month 4 -0.73 0.59 [-1.93, 0.39]
Month 5 -0.79 0.58 [-1.80, 0.49]
Month 6 -0.74 0.60 [-2.05, 0.32]
Month 7 -0.68 0.61 [-1.76, 0.60]
Month 8 -0.65 0.60 [-1.67, 0.67]
Month 9 -0.72 0.58 [-2.01, 0.27]
Month 10 -0.73 0.61 [-2.23, 0.16]
Month 11 -0.75 0.60 [-2.18, 0.17]
Month 12 -0.78 0.59 [-2.05, 0.26]
Month 13 -0.76 0.58 [-2.02, 0.28]
Month 14 -0.73 0.60 [-2.10, 0.26]
Month 15 -0.68 0.60 [-2.13, 0.32]
Month 16 -0.82 0.57 [-1.88, 0.40]
Month 17 -0.86 0.57 [-1.88, 0.36]
Month 18 -0.75 0.61 [-2.13, 0.24]
Month 19 -0.80 0.59 [-1.98, 0.32]
Month 20 -0.84 0.60 [-1.98, 0.36]

Notes: This table presents HAD estimates for iOS treatment effects following de Chaisemartin et al. (2024). Panel
A shows placebo tests for pre-treatment periods. Panel B shows monthly treatment effect estimates after ATT
implementation. All p-values from the Heteroskedasticity-robust Yatchew Test are greater than 0.15, indicating
no significant violations of model assumptions. Sample sizes range from 661-666 observations. 95% confidence
intervals are shown in brackets.
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Figure B.1: Dynamic Estimates from de Chaisemartin et al. (2024)
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Notes: Results use the revenue dataset. The estimates present the treatment effects as described
in de Chaisemartin et al. (2024) The left panel shows results using the pre-treatment Meta revenue
share as the treatment variable and the right panel shows results using the pre-treatment iOS share
as the treatment variable.

Since both tests suggest that the key assumptions are satisfied, our standard TWFE

approach in the main analysis should not suffer from the biases identified in de Chaisemartin

et al. (2024). For completeness, we also provide the results from the HAD estimator in Panel

B of Figures Tables B.1 and B.2 for the Meta and iOS treatment variables, respectively.

These estimates are then plotted in Figure B.1, which shows evidence of consistently negative

effects across post-treatment periods for both treatment variables. While individual monthly

estimates from the HAD approach exhibit some imprecision, the aggregated post-treatment

effect in Table B.3 shows a highly significant negative effect (p < .01), with coefficients of

-0.751 for iOS treatment and -1.048 for Meta treatment.

Table B.3: HAD Estimates for iOS and Meta Treatments

iOS Treatment Meta Treatment

After × Treatment -0.751∗∗∗ -1.048∗∗∗

(0.174) (0.202)

Notes: Results show summarized estimates from the de Chaisemartin et al. (2024) HAD estimator that aggregate
across all post-periods.
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Online Appendix: For Online Publication Only

Appendix C Additional Analyses for Advertising

C.1 Meta Campaign Objective Substitution

We study reallocation within the Meta advertising ecosystem as a result of ATT. One way

that firms might adapt to the reduction in effectiveness of off-platform conversion-optimized

campaigns is to reallocate their spending within Meta to campaign objectives that do not

rely on off-platform measurements. This shift could help maintain the effectiveness of firms’

targeting efforts, as on-platform actions can serve as good indicators for off-platform actions,

and they still provide direct feedback for optimization. As such, the main goal of this section

is to understand the extent and magnitude of such reallocation.

First, we discuss the various targeting objectives that firms can optimize for on the Meta

advertising platform. There are a large number of objectives and, for our purposes, we

categorize the different objectives into three groups: off-platform conversions, on-platform

actions, and on-platform reach. For off-platform conversions, we consider campaigns with one

of the following objectives: conversions, sales outcomes, product catalog sales, app installs,

app promotion.1 On-platform actions consist of link clicks, store visits, page likes, leads

outcome, traffic outcomes, engagement outcomes, and post engagement. On-platform reach

consists of video views, brand awareness, reach, and awareness outcomes.2

We present summary statistics across the individual campaign objectives, and summarize

the mapping to campaign objective categories, over the pre-ATT period, in Table OA1.

There are two main observations to note. First, the conversion-optimized campaigns make

up the vast majority of total spending. Second, optimizing for link clicks is the most popular

1In our main analyses, we define conversion-optimized campaigns as those with conversions, sales out-
comes, and product catalog sales objectives. While app install campaigns also use off-platform data, their
attribution path differs from product sales (Li & Tsai, 2022). Since our focus is on the impact on firm
revenue, we exclude these campaigns, though their inclusion does not significantly alter the results.

2This includes all campaign objectives except for messages and event responses because ambiguity arises
when attempting to categorize them.

1



on-platform campaign objective.3 Table OA2 provides summary statistics for each of the

campaign objective groups, and shows that 95% to 96% of Meta advertising spend is on

conversion-optimized campaigns, both before and after ATT.

Table OA1: Spend Share of Meta Advertising Campaign Objectives

Campaign objective Categorized objective Total spend share
Conversions Off-platform conversions 84.14%
Product catalog sales Off-platform conversions 9.42%
App installs Off-platform conversions 2.09%
Link clicks On-platform actions 1.90%
Reach On-platform reach 0.91%
Brand awareness On-platform reach 0.79%
Video views On-platform reach 0.55%
Post engagement On-platform actions 0.15%
Store visits On-platform actions 0.02%
Page likes On-platform actions 0.02%

Notes: This table presents the aggregated spend share of different campaign objectives across firms in the pre-ATT period.
Spend share is defined to be the proportion of all spending for which a particular campaign objective is the source.

Table OA2: Spend Share of Meta Advertising Before vs After ATT: Categorized Objectives

Categorized campaign objective Pre-ATT Post-ATT
Off-platform conversions 95.7% 95.0%
On-platform reach 2.2% 2.5%
On-platform actions 2.1% 2.5%

Notes: This table presents the aggregated spend share of different categorized campaign objectives, using the categorizations
provided in Table OA1, across firms in the pre-ATT period (column 2) and the post-ATT period (column 3). Spend share
is defined to be the proportion of all spending for which a particular campaign objective is the source over the relevant time
period.

While Table OA2 documents that there was minimal aggregate spending away from off-

platform conversions in the post-ATT period, we now turn to a firm-level analysis. Our main

goal is to understand whether, at the firm level, firms reallocated spend on Meta away from

off-platform conversion-optimized campaigns to on-platform action-optimized campaigns.

3This table does not include every objective listed previously, as Meta grouped and rebranded some of
them in December 2021, changes that were rolled out slowly and that make up a small fraction of spending
in 2022 (https://bit.ly/4gi074u).
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We consider three dependent variables: the campaign objectives’ share of spending, their

share of impressions, and an indicator for whether spend for that campaign objective was

non-zero. The former two metrics provide a measure of intensive margin substitution – to

what extent do firms shift their share of spending more to on-platform actions – while the

final metric provides a measure of extensive margin substitution – to what extent do firms

start to run on-platform campaigns. We focus on shares for the intensive margin since we

focus on relative reallocation within Meta.

Table OA3: Meta Campaign Objective Substitution

Dependent variable:

(1) (2) (3)

Spend share Impression share 1(Spendt > 0)

Aftert× On-platform actions −0.007 0.004 0.015
(0.007) (0.009) (0.011)

Aftert× On-platform reach −0.003 0.008 0.021∗∗

(0.005) (0.007) (0.009)

Week FE Yes Yes Yes
Firm-Campaign FE Yes Yes Yes

Observations 72,228 72,228 72,228
R2 0.839 0.750 0.535

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: All results use the advertising dataset. We estimate specification (2) on a balanced panel
of firms that have non-zero spend on Meta. The dependent variables are the share of spend (col-
umn 1), share of impressions (column 2), and whether there is non-zero spend (column 3). The
left out category is off-platform conversions. Standard errors clustered at the firm level.

We consider a balanced panel of Meta firms that have positive spend on any campaign

objective throughout the sample period and estimate the within-firm difference-in-differences

specification (2). As with the main analyses, this allows us to control for differences across

firms. Table OA3 displays the results that, consistent with the aggregate spending in Table

OA2, show a precise null effect on substitution to on-platform objectives on the intensive-

margin. We note that there is an economically small, but statistically significant, substitution

in the extensive margin to objectives optimizing for on-platform reach. As such, this mo-

tivates us to have our main analyses in Figure 3 estimated using a balanced panel of firms

that use both click- and conversion-optimized objectives before ATT.
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C.2 Additional Analyses for Advertising Platform Substitution

In this section, we consider additional analyses to provide a more complete picture of sub-

stitution across advertising platforms. We first show that conversions from Google were

not as adversely impacted as conversions from Meta as a result of ATT. Then, we explore

absolute trends in spending patterns between Meta and Google to show that they follow

similar patterns before ATT, but noticeably diverge after ATT. Finally, we explore whether

reallocation was more likely by more Meta-dependent firms.

Figure OA1: Event Study for Google Conversions
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(a) Event Study for Google Search Conversions
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(b) Event Study for Google Display Conversions
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(c) Event Study for Overall Google Conversions

Notes: Results use a balanced panel of firms using Google advertising from the advertising dataset. The plots represent the
estimated event study coefficients from specification (1) with standard errors clustered at the firm level and data aggregated
at the weekly level. Panels (a) and (b) restrict to Google Search and Display services respectively, while panel (c) includes the
full set of Google advertising services.

Google Advertising Effectiveness after ATT: Our primary comparison across adver-

tising platforms is between Google and Meta. While in the main text we provide evidence

that the quality of advertising targeting was degraded on Meta, here we provide event study
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estimates for the relative changes in the performance of Google advertising. To do so, we

estimate the event study specification (1) for the log of conversions across all Google ad-

vertising as well as Google Display ads, which provides the closest targeting in the Google

ecosystem relative to that offered by Meta, and Google Search ads, the largest Google ad-

vertising service.4 We report the results in Figure OA1. In contrast to the sudden and

persistent drop-off in logged conversions observed on Meta in Figure 2 there is no discernible

negative impact on conversions for the Google ecosystem or either Google Search/Display

individually.

Figure OA2: Event Study for Online Advertising Spending
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(a) Event Study for Meta Spending

−0.8

−0.4

0.0

0.4

0.8

2021−01 2021−07 2022−01 2022−07
Date

lo
g(

G
oo

gl
e 

Sp
en

d
)

(b) Event Study for Google Spending
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(c) Event Study for Total Advertising Spending

Notes: Results use a balanced panel of firms with advertising spending from the advertising dataset. The plots represent the
estimated event study coefficients from specification (1) with standard errors clustered at the firm level and data aggregated
at the weekly level. Panels (a) and (b) consider the dependent variable as the log of online advertising spending for Meta
and Google, respectively. Panel (c) considers the dependent variable as the log of online advertising across Meta, Google, and
TikTok.

Changes in Total Advertising Spending: Given that we have some evidence that Google

4For the individual services, we report results only from January 1 until October 31, 2021 since Google
launched its Performance Max product in November 2021, which led to substitution within the Google
ecosystem that is orthogonal to ATT.
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advertising is less impacted than Meta advertising, we explore whether and to what extent

firms changed their online advertising shares towards Google as opposed to Meta. To do so,

we focus mainly on changes in total advertising spending. We consider advertising spend,

and not quantities of advertising purchased or their price, for the following reasons. First,

the quantity variable varies across different types of advertising platforms and even within

the same platform. For instance, Google Search is purchased per click, whereas Google

Display is purchased per impression and on Meta firms can choose to pay per click or per

impression. Furthermore, our data allows us only to observe end outcomes, so that we can

only observe the average price of the ads that firms actually purchase.

Figure OA3: Event Study for Meta Online Advertising Share of Clicks and Impressions
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(a) Event Study for Online Ad Click Share
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(b) Event Study for Online Ad Impression Share

Notes: The plots represent the estimated event study coefficients from specification (1) with standard errors clustered at the
firm level and data aggregated at the monthly level. Panels (a) and (b) consider the dependent variable of the share of observed
clicks and impressions, respectively, attributed to Meta.

In the main text, we show that the share of online advertising spend on Meta advertising

declines. In this section, we estimate the event study specification (1) for total online adver-

tising spending as well Google and Meta advertising spending individually, and we plot the

estimates in Figure OA2. Figure OA2 shows that spending is increasing on both Google and

Meta advertising before ATT at a similar rate, and that, after ATT, the spending on Google

continues on a similar trend, whereas on Meta it slowly declines over time. The increasing

time trend for online advertising spending is consistent with the revenue time trend shown

in Figure OA4. We cannot disentangle whether this comes from supply-side or demand-side
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effects, but we additionally show in Figure OA3 that we get similar relative reductions in

quantity of Meta ads using either clicks or impressions as our quantity measure.

Table OA4: Advertising Platform Substitution Estimates

Dependent variable:

(1) (2) (3)

Platform Spend share Impression share Click share

Google 0.048∗∗∗ 0.067∗∗∗ 0.057∗∗∗

(0.009) (0.010) (0.009)

Meta −0.044∗∗∗ −0.061∗∗∗ −0.057∗∗∗

(0.009) (0.010) (0.009)

TikTok −0.004 −0.005 −0.001
(0.002) (0.003) (0.003)

Google Search 0.011 0.012 0.012
(0.008) (0.008) (0.008)

Google Display 0.005∗∗∗ 0.028∗∗∗ 0.013∗∗∗

(0.002) (0.006) (0.004)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Notes: Results use the advertising dataset. Each cell displays the estimated average treatment effect using
specification (3) with the different specified dependent variables (columns) and subsetted to the relevant platforms
(rows). The first three rows present the results of the difference-in-differences specifications for share of spend,
impressions, and clicks on overall spending on Meta, TikTok, and Google. The final two rows present the same
dependent variables for Google Search and Google Display products. The results for Google Search and Google
Display are estimated over the period January to October 2021 as Google launched its popular Performance Max
product in November 2021, which led to substitution within the products in the Google ecosystem. Standard errors
are clustered at the firm level.

Which firms are more likely to reallocate? We now explore whether firms more de-

pendent on Meta were more likely to reallocate their spending by estimating the across-firm

difference-in-differences specification (3). We define the treated group as firms with above-

average Meta advertising spend as a proportion of total advertising spend in the advertising

dataset.5 We consider a balanced panel of firms that spend non-zero dollars on any adver-

tising platform throughout the same sample period as before and the considered dependent

variables are the online advertising market share of impressions, clicks, and spending across

5The mean is reported in Table 1 as 0.75.
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the different platforms. The first three rows of Table OA4 show the results for the online

advertising market shares of Google, Meta, and TikTok. They suggest that for each of

the measures that we consider Google benefited at the expense of Meta, gaining 4.8 to 6.7

percentage points of market share, whereas there was no shift in market share to TikTok.

Furthermore, rows (4) and (5) of Table OA4 show the change in market share across different

Google products and there is a greater increase in the share of Google Display relative to

Google Search.
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Appendix D Additional Analyses for Revenue

D.1 Robustness Checks for Revenue Effects

In this section we consider several robustness exercises to complement our main analyses.

D.1.1 Raw Data Plots

In Figures OA4 and OA5 we plot the demeaned log monthly revenue for the treated and

control set of firms, where treatment is defined using the Meta revenue share and the iOS

revenue share, respectively. In both cases, in the pre-ATT period we see nearly identical

trends in revenue with modest monthly growth over time. Roughly when ATT takes effect,

we see that this trend continues nearly linearly for the firms with a low Meta/iOS share

of revenue, whereas the upward trend stops for the firms with a high Meta/iOS share of

revenue, for which revenues over time flatten out.

Figure OA4: Log Revenue for Low and High Meta Shares

Notes: Results using the revenue dataset. High and low Meta shares are calculated using a median split of pre-ATT revenue
from Meta traffic. Plot shows log(revenue) demeaned using the pre-ATT mean along with 95% confidence intervals.
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Figure OA5: Log Revenue for Low and High iOS Shares

Notes: Results using the revenue dataset. High and low iOS shares are calculated using a median split of pre-ATT revenue
from iOS traffic. Plot shows log(revenue) demeaned using the pre-ATT mean along with 95% confidence intervals.

D.2 Reduced New Customer Acquisition as a Mechanism

In this section we characterize the extent to which revenue reductions were due to a decline

in new customer acquisition. We do so by analyzing a secondary dataset associated with

the advertising dataset. In this secondary dataset, we observe aggregated revenue data from

the set of firms in the advertising dataset that provide access to their Shopify account and

can directly link this to their advertising spending. Importantly for our purposes, these

data provide us with a complete view of revenue for the firms. In particular, we observe

the total revenue, the number of orders, and the fraction of orders that come from repeat

customers. The Shopify data have no measurement issues as a result of ATT. Notably, the

measurement of repeat customers relies on data unaffected by the changes from ATT since

they are typically user-provided email addresses or phone numbers. Thus, the ability to
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separately measure new and repeat customers allows us to characterize the effects on new

customer acquisition.

We note two significant limitations to this analysis. First, the number of firms that

provide access to revenue data and are present through the full sample is relatively small.

Second, the firms in the advertising dataset are strongly Meta-dependent and our represen-

tativeness exercises highlight that the advertising dataset skews towards smaller firms. As

such, the estimates in this section will be relatively imprecisely estimated and underestimate

the overall effect on orders and revenues, relative to our analyses in Section 4. Despite these

limitations, the fact that we can decompose new and repeat customers provides additional

evidence directly linking revenue changes to advertising, which we cannot do in our primary

analyses.

For this analysis we estimate the across-firm difference-in-differences specification (3)

defining treatment as whether Meta advertising spend was above the mean within the set of

firms, and we use the measure of the fraction of orders processed by a merchant that come

from repeated customers. We consider monthly sales measures and, after joining with the

advertising data, compute each firm’s pre-ATT spend share for Meta advertising.

Figure OA5 presents the results for the dependent variables that we observe from Shopify:

log(revenue), log(order count), and repeat order ratio. The takeaway across each of these

is consistent: there is a reduction in orders and revenue of 20-22% and the fraction of total

orders coming from repeat customers has increased. To understand whether this is simply

a result of shifting advertising spend, we estimate the difference-in-differences specification

controlling for the log of advertising spend. These results are presented in the second row

of Table OA5. While this reports similar effect sizes for the ratio of repeat customers, we

no longer find statistically significant reductions in revenues or orders though we still find

comparable and economically large negative point estimates. For the repeat order ratio, the

pre-ATT baseline for the share of orders coming from repeat customers was 33.93%, implying

a 10.5% increase in the share of orders coming from repeat customers.
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To characterize the absolute impact on new and repeat orders respectively, we use the

repeated order ratio combined with the total number of orders to estimate the effects on

the number of orders coming from new and repeat customers, respectively. The results of

estimating the same empirical specification (3) using the log of new and repeat orders as the

dependent variables are presented in columns (2) and (3) of Table OA6. Column (2) shows

a statistically significant 28.5% decrease in orders coming from new customers, but column

(3) shows a negative, statistically insignificant, effect on repeat customer orders. The second

row of Table OA6 shows that this result is robust to controlling for total online advertising

spend. That being said, while the effect on the repeat customer ratio remains consistent

when controlling for advertising spend, we find that the coefficients for revenue and orders

decrease in magnitude. This suggests that some of the revenue decline can be attributed to

changes in firms’ total advertising spending patterns after ATT, even though the majority

of the effect is due to decreased effectiveness of the advertising that is still being purchased.

In sum, this provides evidence that the revenue reductions are primarily due to weakened

new customer acquisition and that there does not appear to be a countervailing effect of

increased customer retention. If anything, our results point to reductions in revenues among

repeat customers as well.

We conduct several robustness checks to validate the result that the primary reduction

in orders comes from new customers. Figure OA6 considers the time-varying difference-in-

differences specification with ad spending controls and provides evidence that the parallel

trends assumption seems to reasonably hold. We then consider the same set of specifications

using a negative binomial regression as an alternative to handling the small fraction of zeros

in our data. Table OA7 presents the results for total, new customer, and repeat customer

orders respectively. The results and effect sizes are largely consistent with our earlier analyses

showing that the reduction in orders from new customers seems to be the driving force for

the overall reduction in orders. The estimates for θ in Table OA7 indicate that there is

moderate overdispersion in the data, supporting the suitability of the negative binomial
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regression model.

Table OA5: Difference-in-Differences Estimates for Sales

Dependent variable:

(1) (2) (3) (4) (5) (6)

log(Orders) log(Revenue) Repeat order ratio

Aftert × Treated −0.242∗ −0.171 −0.230∗ −0.156 3.994∗∗∗ 3.563∗∗

(0.129) (0.118) (0.131) (0.119) (1.415) (1.419)

Ad spending controls No Yes No Yes No Yes
Firm FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes

Observations 5,772 5,772 5,772 5,772 5,772 5,772
R2 0.854 0.872 0.847 0.867 0.808 0.813

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Results use a balanced panel of firms within the advertising dataset for which Shopify trans-
action data are observed. The rows present the estimated average treatment effect coefficient using the
difference-in-differences specification (3) with and without controls for log(total advertising spending +
1). Standard errors are clustered at the firm level.

Table OA6: Difference-in-Differences Estimates for New vs. Repeat Customers

Dependent variable:

(1) (2) (3) (4)

log(New customer orders + 1) log(Repeat customer orders + 1)

Aftert × Treated −0.337∗∗∗ −0.257∗∗ −0.154 −0.097
(0.128) (0.116) (0.141) (0.132)

Ad spending controls No Yes No Yes
Firm FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes

Observations 5,772 5,722 5,722 5,722
R2 0.829 0.852 0.877 0.886

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Results use a balanced panel of firms within the advertising dataset for which Shopify transaction
data are observed. The columns are log(1 + orders) coming from new and repeat customers. The rows
present the estimated average treatment effect coefficient using the difference-in-differences specification (3),
where odd columns do not control for log(1 + total advertising spending) and even columns do control for
them. Standard errors are clustered at the firm level.

13



Table OA7: Difference-in-Differences Estimates for New vs. Repeat Customers (Negative Binomial Specification)

Dependent variable:

(1) (2) (3) (4) (5) (6)

Total orders Orders from new customers Orders from repeat customers

Aftert × Treated −0.165∗∗∗ −0.134∗∗∗ −0.243∗∗∗ −0.208∗∗∗ −0.088∗∗ −0.061∗

(0.033) (0.035) (0.034) (0.032) (0.034) (0.033)

Ad spending controls No Yes No Yes No Yes
Firm FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes

Observations 5,772 5,772 5,772 5,772 5,772 5,772
θ 3.262∗∗∗ (0.059) 3.597∗∗∗ (0.066) 2.814∗∗∗ (0.051) 3.142∗∗∗ (0.057) 3.231∗∗∗ (0.061) 3.449∗∗∗ (0.066)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Results use a balanced panel of firms within the advertising dataset for which Shopify transaction data are observed. The first two columns use total
orders as the dependent variable, the next two focus on new customer orders, and the last two on repeat customer orders. The odd columns do not control for
log(total ad spending + 1), whereas the even columns do. The rows present the estimated average treatment effect coefficient using the difference-in-differences
specification (3) estimated using a negative binomial model. Standard errors are clustered at the firm level.

Figure OA6: Time-Varying Treatment Effects for Sales Outcomes
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(b) DiD Estimates for Repeat Order Ratio
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(c) DiD Estimates for New Orders

Notes: Results use a balanced panel of firms within the advertising dataset for which Shopify transaction
data are observed. The dependent variables on the top row from left to right: log(orders), Repeat order
ratio. The dependent variable on the bottom row is log(new customer orders + 1). Plots are the time-varying
estimates for the difference-in-differences specification (2) with controls for the log(total advertising spend
+ 1). Standard errors are clustered at the firm level.
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Appendix E Data Representativeness

In this section, we discuss the representativeness of the two main datasets – the advertising

and revenue datasets – that we employ in the main analyses. The primary threat to rep-

resentativeness stems from firms self-selecting to share data with the respective providers.

To address this, we provide transparency into the nature of this selection process and its

implications for the empirical data. First, we outline the selection mechanisms to better

understand which types of firms have the strongest incentives to opt in. Second, and most

importantly, we compare the datasets to consumer-level benchmarks, including advertising

spending and session count/revenue data, which are not subject to firm-side self-selection.

Summarizing the main results from the analyses below, we find that the advertising

dataset aligns with the broader population of e-commerce firms in terms of total advertising

spending but skews towards smaller-sized firms. The revenue dataset similarly aligns well

with the broader population of e-commerce firms in terms of size, as measured by session

counts, and trends in size over time, as measured by session counts and revenue, show-

ing a slight skew towards relatively larger firms than those in the advertising dataset. As

such, while our ability to assess representativeness is limited by the availability of external

benchmark data, the external benchmark data that are available to be analyzed provides em-

pirical support for the representativeness of the two datasets vis-à-vis a broad cross-section

of e-commerce firms along key dimensions.

E.1 Advertising Data Representativeness

In this section, we assess the representativeness of the advertising data. The main identifi-

cation threat is that we only observe data for firms that opt into their data being tracked by

the analytics firm that gave us access to the advertising data. This may induce selection in

the type of firms that we observe, threatening the external validity of the resulting estimates.

As such, we discuss of the nature of selection into the advertising dataset, then empirically
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evaluate representativeness of the advertising dataset versus external benchmark data.

E.1.1 Selection into Sample

The analytics firm that provided us with the advertising data provides benchmarking of key

business metrics across industries using aggregated and anonymized data sourced directly

from participating advertisers. This analytics firm has a “give to get” business model in which

firms that allow their data to be tracked are, in turn, given access to the anonymized and

aggregated benchmarking data by the analytics firm. As such, firms opt into the advertising

dataset to gain access to the performance of their marketing campaigns relative to other

firms. It allows them to learn the acquisition costs of similar firms and for advertising

campaigns that are targeting similar segments. Second, because the data are updated in near

real-time, firms that opt in can better understand whether short-term changes in marketing

performance are idiosyncratic to them or reflect broader market-level changes. The value

proposition of the advertising data provider’s analytics platform, which primarily revolves

around competitive insights, is not inherently skewed towards a particular firm size. Ex

ante, it is not obvious that participation in the advertising dataset would be systematically

dominated by either smaller or larger firms.

E.1.2 Online Advertising Spending

To assess the representativeness of this dataset, we manually collected advertising spend-

ing across all media using Kantar’s Vivvix Advertising Intelligence Product.6 For online

advertising, Kantar generates its dataset using a combination of automated web crawlers

that repeatedly scrape advertisements and a panel of 1.2 million consumers with technol-

ogy installed on their devices to track exposure information. By pairing these exposure data

with rate cards, Kantar estimates total advertising spending. Importantly, this methodology

allows Kantar to provide comprehensive estimates of advertising spend across firms without

6https://www.vivvix.com/home
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firm-side self-selection into the dataset, which was the main identification threat associated

with our advertising dataset.7

Kantar-Vivvix is one of the largest advertising intelligence databases used in academic

research and industry, covering approximately $100 billion in annual advertising spending

across 4 million brands and 3 million advertisers, and it is used by firms such as Procter

and Gamble, Unilever, and Google. Its digital coverage is more comprehensive than that of

its primary competitor, Nielsen Ad Intel. As such, while it may not have complete cover-

age of advertising spending, it offers coverage that is more complete than that of available

alternatives, to the best of our knowledge.

While the Kantar-Vivvix dataset has wide coverage, it provides us with a cruder measure

of firm behavior than our advertising dataset, which contains richer data about their online

advertising campaigns, including the breakdown by platform and campaign type, as well as

direct measures of conversion rates as reported by the advertising platforms. These measures

are not tracked by Kantar-Vivvix, making the Kantar-Vivvix dataset not adequate for our

main analysis, but valuable as an external benchmarking dataset to assess representativeness.

The Kantar-Vivvix dataset contains firms spanning many industries that fall outside of e-

commerce, such as retail, consumer packaged goods, automotive, and financial services, which

are not relevant to our analysis. Therefore, we collect data from BuiltWith8 to subset down

to firms operating on Shopify, which serves as a proxy for the e-commerce retailer category.

BuiltWith is a technology-profiling firm that identifies the underlying technologies used by

websites, including e-commerce platforms such as Shopify. It does so without selection

bias, as BuiltWith collects publicly available information, using web crawlers to examine

HTML, JavaScript, CSS, and other code on those web pages, thus identifying embedded

technologies without firm participation or opt-in. The resulting collection of 7,900 firms

within this Kantar-Shopify dataset is broadly representative of a wide cross-section of the

7We use the version of the Kantar-Vivvix dataset that provides comprehensive spending coverage across
mobile, desktop, and video, thus enabling credible measurement of online advertising spend.

8https://builtwith.com
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Figure OA7: Advertising Data vs. Kantar-Vivvix (Shopify) Online Ad Spending Distribution
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Dataset Advertising Dataset Kantar−Vivvix (Shopify)

Dataset Mean Median SD 25th 75th N
Advertising Data 10.79 10.71 1.89 9.52 12.10 1475
Kantar-Vivvix (Shopify) 11.63 11.55 2.03 10.39 12.89 3248

Notes: This figure and table compare the kernel density estimate and summary statistics of online adver-
tising spending between January 1, 2021 and March 31, 2021 for the focal advertising data (Advertising
Data) and the Kantar-Vivvix Shopify subsample (Kantar-Vivvix). The figure presents a visual comparison
using a kernel density estimate, while the table provides summary statistics of the logarithm of total online
advertising spending. “SD’” represents the empirical standard deviation. Both samples include firms with
advertising spending in each week during this period.

e-commerce retailer category.9

We compare the total advertising spend distribution of the resulting Kantar-Shopify firms

with the corresponding advertising spend distribution for the firms within the advertising

dataset over the period of time between January 1, 2021 and March 31, 2021, since the

Kantar-Vivvix data collects mobile ad spending starting at the beginning of 2021, and April

2021 is when ATT is rolled out. We include only firms with advertising spending in each

week during this period. This allows us to assess the representativeness of the advertising

data to the e-commerce retailer category in terms of total advertising spend.

9As the Kantar-Vivvix data do not provide a domain name, we match firms within Kantar-Vivvix and
firms in the advertising dataset manually by firm name.
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We compare the distribution and summary statistics of the log of total online advertising

spend in Figure OA7. Overall, these results indicate that while both distributions span a

similar range of firm sizes (i.e., have common support), the advertising dataset shows an

overrepresentation of smaller firms compared to the broader e-commerce retailer population

as captured by the Kantar-Vivvix benchmark, with a mean and median that are both ap-

proximately 7.2% smaller. These findings suggest that the advertising dataset reasonably

approximates the e-commerce retailers in terms of total advertising spending, with a slight

overrepresentation of smaller firms.

E.2 Revenue Data

As with the advertising dataset, we assess the representativeness of the revenue dataset by

first discussing the nature of selection into it, and then empirically comparing it against two

benchmark datasets. The first benchmark dataset consists of publicly disclosed merchant

revenues from Shopify, a widely used e-commerce platform. The second benchmark dataset

comes from SimilarWeb, a leading provider of web traffic and performance metrics. We use

these datasets to empirically evaluate the representativeness of the revenue data in terms of

firm size and changes in revenue over time.

E.2.1 Selection into Sample

To better understand the nature of selection into the revenue dataset, we describe the main

incentives that firms have to use our data provider, Grips Intelligence. Grips acquires its data

through services and analytics that firms can access in exchange for providing their data.

These services provide insights into business performance, in absolute terms and relative to

competing firms. Grips’ platform does not exclusively cater to a particular size category of

firms because, similar to the reasoning summarized above for the advertising dataset, the

competitive benchmarking data that Grips provides can be valuable to firms regardless of

their size. As such, it is not a priori obvious that the resulting sample would be dominated
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by one size category of firms rather than another.

For this research, Grips compiled the dataset by first identifying all firms with active

API access as of December 2023 that had data points for each of the years 2019, 2020,

2021, and 2022, resulting in an initial pool of 1,807 candidate firms. We then filtered these

candidate firms down to those with complete coverage over the full observation period, no

missing revenue data at the monthly level (e.g., due to tracking errors), and no missing

session count data at the daily level over the entirety of the observation period, resulting in

a final collection of 773 firms which are used in our main analysis.

E.2.2 Representativeness Across Time

We evaluate whether changes in total revenue across time within the revenue data reflect

changes in total revenue across time within a broader population of e-commerce firms.

Establishing alignment in revenue over time mitigates concerns about dataset-specific bi-

ases/artifacts, which is important since our identification strategy leverages across-time

comparisons. We assess this in two ways. First, we use publicly disclosed financial data

from Shopify’s 2023 Investor Day presentation.10 Second, we utilize data from SimilarWeb,

a leading and widely-used provider of digital intelligence and analytics. We first present the

analysis using Shopify data, then present the corresponding analysis using the SimilarWeb

data.

The financial data disclosed by Shopify in the aforementioned Investor Day presentation

provide a population-level view of revenue generated by Shopify merchants, making the

resulting analysis a natural complement to the representativeness analysis performed above

on the advertising dataset, as both analyses leverage Shopify firms as an empirical benchmark

for assessing our datasets.

Importantly, the Shopify public disclosure data segments merchants into acquisition co-

horts based on the year in which those merchants began selling on Shopify. This cohort-based

10Shopify Investor Day 2023, page 126. Available at: https://s203.q4cdn.com/784886181/files/doc
presentations/Shopify-Investor-Day-2023-Presentation.pdf.
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segmentation is particularly valuable for constructing an “apples-to-apples” comparison with

the revenue dataset, which includes only merchants that began operating before the begin-

ning of the pre-treatment period, which is one year prior to the rollout of ATT (i.e., before

April 2020). Correspondingly, because merchants are segmented into annual cohorts, we

compute revenue figures using the Shopify benchmark data for firms that began selling

on Shopify prior to 2020 as this allows for the closest match between the two respective

datasets in terms of merchant acquisition dates. By aligning cohorts in both datasets, we

isolate revenue trends for existing (i.e., pre-treatment) merchants while minimizing potential

confounding effects from newly onboarded firms.

Figure OA8: Time Series of Overall Revenue: Revenue Dataset vs. Shopify
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Notes: This figure compares total revenue each quarter, as observed through the revenue data, to total revenue across Shopify
merchants, as observed through cohort-level data publicly disclosed by Shopify. Firms within the revenue dataset began
operating before April 2020; only merchants that began selling through Shopify prior to 2020 underlie the Shopify figures. Data
series are mean-scaled relative to the Shopify sample to facilitate visual comparison across time.

Figure OA8 shows the resulting comparison of Shopify revenue to our revenue dataset

over time, after scaling the latter so that it has the same empirical mean as the former so

as to facilitate visual comparability. The two resulting time series show consistent trends

over time, supporting the notion that spending trends over time in the revenue dataset are

representative of broader trends within the e-commerce retailer category and are not artifacts
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of the revenue dataset. The empirical correlation of these two time series is 97.2%.

We provide a second across-time comparison using data from SimilarWeb. As noted

above, SimilarWeb is a provider of digital intelligence and analytics that estimates domain-

specific sessions for over 100 million websites using diverse clickstream data sources, including

anonymous traffic from millions of devices and partnerships with DSPs, ISPs, and other

measurement firms. The nature and breadth of SimilarWeb’s data sources minimize firm-

side selection bias, making it an appropriate benchmark.

For the sake of consistency with our other representativeness analyses, we obtained data

on the top 7,000 e-commerce firms tracked by SimilarWeb (ranked by session counts from

2019 to 2021). From within this set, we then filtered down to the firms that maintained

positive sessions in 2019, mirroring the selection criteria used for the revenue data.

Figure OA9: Time Series of Overall Sessions: Revenue Dataset vs. SimilarWeb
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Notes: This figure compares session counts over time across three samples: (1) the revenue dataset (mean-scaled), (2) all firms
tracked by SimilarWeb, and (3) the subset of SimilarWeb firms operating on Shopify (mean-scaled). Data series are mean-scaled
relative to the full SimilarWeb sample to facilitate visual comparison across time.

We compare the revenue data to two samples from the SimilarWeb data: all firms and

the subset of firms that operate on Shopify (as identified using BuiltWith). The former

sample provides a comprehensive view of e-commerce retailers across multiple platforms,
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offering broader insights into industry-wide patterns. The latter Shopify-focused collection

of firms is more complementary to the Shopify public disclosures and the Kantar-Vivvix-

Shopify dataset in that all three datasets represent populations of e-commerce retailers using

Shopify. Taken together, these analyses enable a more comprehensive assessment of the

robustness/sensitivity of our dataset’s representativeness over time as we vary firm sizes and

size measures.

The results are shown in Figure OA9. We again see strong correspondence between trends

in session counts over time between the revenue and both the SimilarWeb and SimilarWeb-

Shopify datasets. The empirical correlations between the revenue and SimilarWeb/SimilarWeb-

Shopify time series are 87.2% and 79.4%, respectively.

Taking these results together, the close alignment of revenue and session count trends

across these two benchmarking datasets suggests that the revenue data capture broader e-

commerce market temporal dynamics with reasonable fidelity, and that these findings are

robust across different measures of firm activity and sample definitions.

E.2.3 Representativeness in Firm Size

Finally, we compare the distribution of firm size in the revenue data to benchmark data

from SimilarWeb using both the full SimilarWeb sample and the subset of firms operating

on Shopify. The results, shown in Figure OA10, demonstrate that the distribution of yearly

session counts for calendar year 2020 in the revenue dataset aligns reasonably well with

both SimilarWeb samples. The revenue dataset’s mean (14.71) falls between that of the full

SimilarWeb sample (14.99) and the Shopify-only subsample (14.42), with similar patterns

for the median values. The revenue dataset exhibits slightly more dispersion (SD = 1.85)

than both the full SimilarWeb sample (SD = 1.63) and the Shopify-only subsample (SD =

1.30).

Overall, these comparisons suggest that the revenue dataset spans a similar range of firm

sizes as the benchmark samples, though with different frequency distributions. The revenue
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Figure OA10: Revenue Dataset vs. SimilarWeb Session Distribution and Summary Statistics
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Dataset Mean Median SD 25th 75th N
Revenue data 14.71 14.49 1.85 13.54 15.75 773
SimilarWeb 14.99 14.83 1.63 13.92 15.87 7000
SimilarWeb - Shopify 14.42 14.40 1.30 13.59 15.17 2868

Notes: This figure displays the kernel density estimate of yearly session counts (log-transformed) across
three samples: revenue dataset retailers, SimilarWeb’s full e-commerce sample, and SimilarWeb’s Shopify-
only retailers. The accompanying table presents summary statistics for these distributions, also on a loga-
rithmic scale, including mean, median, standard deviation (SD), 25th and 75th percentiles, and sample size
(N). All data are based on firms with recorded session counts.

dataset exhibits wider variance in firm sizes compared to the SimilarWeb samples, with an

empirical mean that falls between the full sample and Shopify-only sample means. The wider

variance observed is likely explained by the data collection methodology for the SimilarWeb

data, with both samples being derived from the largest 7,000 firms by size; restricting to the

larger firms naturally compresses the range of firm sizes and thus reduces variance.

We further note that the revenue dataset spans the full spectrum of firm sizes, enabling

credible analysis of heterogeneous treatment effects (HTE) by firm size (Tables ?? and ??).

Through these HTE analyses, we find that smaller firms are more negatively impacted by

ATT than larger firms. As a result, our main effect estimates could be considered repre-

sentative of mid- to large-sized e-commerce retailers, and a conservative lower bound on the
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effects for target populations with greater representation of smaller e-commerce retailers.

In summary, our analyses demonstrate that both datasets have full support across the

spectrum of e-commerce retailers, but with different frequency distributions compared to

benchmark populations. The advertising dataset oversamples smaller firms, while the rev-

enue dataset includes relatively more larger firms. These differences in sample composition

are important for interpretation, which is why we conduct heterogeneous treatment effect

analyses in Section 4 of the main paper that explicitly examine how ATT’s impact varies

with firm size.

Appendix F Conceptual Framework

This section provides a conceptual model to characterize the equilibrium effects of ATT where

firms allocate online advertising spending between two advertising platforms that differ in

the degree to which they rely on behavioral targeting. We ultimately characterize how ATT

should lead to overall spending allocations to differ between these two platforms, consistent

with the empirical results we describe in the main text.

F.1 Firm Behavior

There is a unit mass of retail firms indexed by (π, θ) ∈ R+ × [0, 1], where π is the profit per

each acquired customer and θ is the retailer’s type vis-à-vis its preference for ad network to

acquire customers. (π, θ) is distributed according to a distribution Φ, which admits strictly

positive density ϕ for all interior (π, θ). They purchase ads from two outlets, F and G. If a

firm of type θ purchases ads aF ≥ 0 and aG ≥ 0 from F and G, respectively, they acquire a

mass of consumers,

q(aF , aG, θ) := f(aF , θ) + g(aG, θ)− h(aF , aG, θ).
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The interpretation is that the firm acquires f(aF , θ) and g(aG, θ) from the two networks,

but out of them h(aF , aG, θ) accounts for the multi-homing consumers who receive ads from

both networks and would have been acquired only from an ad from either network. We thus

subtract them to avoid double counting.

We make the following assumptions:

Assumption 1. (i) f(0, ·) = g(0, ·) = 0 and h(aF , aG, θ) = 0 for all θ if aFaG = 0. (ii)

f, g and g are twice differentiable, and ∂f(0,θ)−h(0,·,θ)
∂aF

= ∂g(0,θ)−h(·,0,θ)
∂aG

= ∞ for all θ; and (iii)

h(aF , aG) is strictly supermodular.

The first two are self-evident, clearly justified by the setup. The assumption (iii) means

that as aG increases, the marginal benefit of aF fall since the multihoming consumers are

more likely to be reached from both networks.

The next assumption captures how θ represents the retailer’s relative preference for F

and G.

Assumption 2. f(aF , θ) is increasing in (aF , θ), and g(aG, θ) is increasing in (aG,−θ),

and q(aF , aG, θ) is strictly concave in (aF , aG). Further, f(aF , θ) − h(aF , aG, θ) is strictly

supermodular in (aF , θ) and g(aG, θ)− h(aF , aG, θ) is strictly supermodular in (aG,−θ).

One interpretation is that F is like the Meta ad network, which specializes in behavioral

targeting, which some firms prefer relative toG (e.g., Google), whose ads are less behaviorally

targeted. The supermodularity assumption means that the marginal benefit of the ad at F

increases in θ, and the marginal benefit of the ad at G decreases in θ.

We next add an assumption that implies that both aF and aG are “normal” goods for

the firm.

Assumption 3. For any (a′F , a
′
G) ̸= (aF , aG) such that a′F + a′G ≥ aF + aG, we have either

∂(f(a′F , θ)− h(a′F , a
′
G, θ))

∂aF
<

∂(f(aF , θ)− h(aF , aG, θ))

∂aF
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or

∂(g(a′G, θ)− h(a′F , a
′
G, θ))

∂aG
<

∂(g(aF , θ)− h(aF , aG, θ))

∂aG
.

Specifically, if the firm purchases higher total units of advertising from the two outlets,

the marginal benefit for at least one advertising must be lower.

Example 1 (Microfoundation based on urn-ball model). Suppose there are two outlets F

and G. There are three types of consumers: those who single-home F, those who single-home

G, and those who subscribe to both outlets. Let xi be the measure of consumers of type

i ∈ {F,G, FG}. Suppose a firm with type θ purchases aj ads from outlet j. An amount a

of ads placed at outlet j has the effective units λj(θ)a of ads directed at type θ. The scaling

factor λj(θ) captures the targeting ability of j for type θ and the relevance of ad product to

type θ. The precise interpretation is that instead of units a randomly landing the eyeball of

a consumer at j, it is as if units λj(θ)a are randomly landing at the representative user. We

can assume that λF (θ) is an increasing function. For example, we can take λF (θ) := λF + θ,

and λG(θ) := λG + (1− θ), for some constants λF , λG > 0.

Let Xj = xj + xFG is the total subscribers of j = F,G. Suppose a firm purchases

ads (aF , aG). Take a representative consumer single homing F . The probability of such a

consumer “missing” the ads by that firm is

(
1− 1

XFm

)λF (θ)aFm

→ e−λF (θ)aF /XF as m → ∞.

So, the number of single-homing customers acquired by F is: xF

(
1− e−λF (θ)aF /XF

)
.

Similarly, the number of single-homing customers acquired by G is xG

(
1−e−λG(θ)aG/XG

)
.

Now consider the dual-homing consumers. The probability of such a consumer “missing”

the ads by that firm is

(
1− 1

XFm

)λF (θ)aFm (
1− 1

XGm

)λG(θ)aGm

→ e
−λF (θ)

aF
XF

−λG(θ)
aG
XG , as m → ∞.

27



So the number of dual-homing consumers acquired by the firm is:

xFG

(
1− e

−λF (θ)
aF
XF

−λG(θ)
aG
XG

)
.

Hence, the total number of consumers acquired is:

xF

(
1− e−λF (θ)aF /XF

)
+ xG

(
1− e−λG(θ)aG/XG

)
+ xFG

(
1− e

−λF (θ)
aF
XF

−λG(θ)
aG
XG

)
=XF

(
1− e−λF (θ)aF /XF

)
+XG

(
1− e−λG(θ)aG/XG

)
− xFG

(
1− e−λF (θ)aF /XF − e−λG(θ)aG/XG + e

−λF (θ)
aF
XF

−λG(θ)
aG
XG

)
=XF

(
1− e−λF (θ)aF /XF

)
+XG

(
1− e−λG(θ)aG/XG

)
− xFG

(
1− e−λF (θ)aF /XF

)(
1− e−λG(θ)aG/XG

)

The microfoundation for our model is therefore:

f(aF , θ) := XF

(
1− e−λF (θ)aF /XF

)
,

g(aG, θ) := XG

(
1− e−λG(θ)aG/XG

)
,

h(aF , aG) := xFG

(
1− e−λF (θ)aF /XF

)(
1− e−λG(θ)aG/XG

)
.

For a range of (aF , aG), the above assumption is satisfied: for ajλ
j(θ) < Xj, f(aF , θ) is

supermodular in (aF , θ) and g(aG, θ) is supermodular in (aG,−θ), and h is supermodular in

(aF , aG).

The current specification does not satisfy Assumption 1-(ii), but its sole purpose is to

facilitate the analysis (based only on first-order conditions), so it is not essential.

Now, we are in a position to characterize the firm’s behavior with regard to the optimal

purchase of advertising. The firm with type (π, θ) solves:

max
aF ,aG

u(aF , aG; θ, pF , pG) := πq(aF , aG, θ)− pFaF − pGaG,
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where pF and pG are the per unit price for ads placed at F and G.

Let aF (pF , pG, π, θ) and aG(pF , pG, π, θ) denote the optimal solution to the problem, and

let v(pF , pG, π, θ) denote the maximized value.

Proposition 1. (i) (aF ,−aG) is increasing in (θ,−pF , pG). (ii) v(pF , pG, π, θ) is supermod-

ular in (θ,−pF , pG); (iii) v(pF , pG, π, θ) is increasing in π; (iv) if (p′F , p
′
G) > (pF , pG), then

aF (p
′
F , p

′
G, π, θ) + aG(p

′
F , p

′
G, π, θ) < aF (pF , pG, π, θ) + aG(pF , pG, π, θ).

Proof. By Assumption 1-(iii) and by Assumption 2, the direct objective function is strictly

supermodular in (aF ,−aG, θ,−pF , pG). Further, the optimal solution is unique, given the

strict concavity assumption. The first two results then follow from these two observa-

tions. The last result is also obvious, established easily by a revealed preference argu-

ment. For (iv), suppose to the contrary a′F + a′G ≥ aF + aG, where a′F := aF (p
′
F , p

′
G, π, θ),

a′G := aG(p
′
F , p

′
G, π, θ), aF := aF (pF , pG, π, θ), and aG := aG(pF , pG, π, θ). By the first order

condition:

π
∂(f(a′F , θ)− h(a′F , a

′
G, θ))

∂aF
= p′F ≥ pF = π

∂(f(aF , θ)− h(aF , aG, θ))

∂aF

and

π
∂(g(a′G, θ)− h(a′F , a

′
G, θ))

∂aG
= p′G ≥ pG = π

∂(g(aF , θ)− h(aF , aG, θ))

∂aG
.

We thus have a contradiction to Assumption 3.

The characterization is clear. Firms with higher θ purchase relatively more ads from F

than from G. The relative ads demand exhibits substitution effects; as (pF ,−pG) rises, firm

reduces aF and increases aG.

We now consider an effect brought about by ATT:

Assumption 4. ATT decreases F ’s effectiveness by shifting (f, h) to a new function,

(f̂ , ĥ), satisfying the above assumptions, such that (i) f̂(aF , θ) − ĥ(aF , aG, θ) < f(aF , θ) −

h(aF , aG, θ) for all aF > 0 and for all θ; (ii) ∂(f̂(aF ,θ)−ĥ(aF ,aG,θ))
∂aF

< ∂(f(aF ,θ)−h(aF ,aG,θ))
∂aF

, and
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∂(g(aF ,θ)−ĥ(aF ,aG,θ))
∂aG

> ∂(g(aF ,θ)−h(aF ,aG,θ))
∂aF

for all aF ≥ 0 and for all θ; and (iii) f(aF , θ) −

h(aF , aG, θ)− [f̂(aF , θ)− ĥ(aF , aG, θ)] is increasing in θ.

With the urn-ball model example, ATT can be modeled as the reduction of the ad-

efficiency parameter for F : that is, λF (·) is replaced by λ̂(·) < λ(·), which then affects f and

h in the way consistent with Assumption 4.

Let âF (pF , pG, π, θ) and âG(pF , pG, π, θ) denote the optimal solution to the problem under

f̂ , and let û(pF , pG, π, θ) and v̂(pF , pG, π, θ) denote the direct and indirect objective functions,

respectively.

Proposition 2. âF (pF , pG, π, θ) < aF (pF , pG, π, θ) and âG(pF , pG, π, θ) > aG(pF , pG, π, θ),

and âF (pF , pG, π, θ) + âG(pF , pG, π, θ) < aF (pF , pG, π, θ) + aG(pF , pG, π, θ). Further, the loss

from the shift v(pF , pG, π, θ)− v̂(pF , pG, π, θ) is nonnegative for all firms, and strictly positive

for firms with aF (pF , pG, π, θ) > 0, and is increasing in θ.

Proof. The first statement follows from the fact that the direct objective before and after

the shift is supermodular in (aF ,−aG) and from Assumption 4-(iii). The second statement

follows from Assumption 3. Namely, suppose to the contrary âF + âG ≥ aF + aG. Then, by

Assumption 4-(iii),

π
∂(f̂(âF , θ)− h(âF , âG, θ))

∂aF
≤ π

∂(f(âF , θ)− h(âF , âG, θ))

∂aF
≤ π

∂(f(aF , θ)− h(aF , aG, θ))

∂aF
= pF

of

π
∂(g(âG, θ)− h(âF , âG, θ))

∂aG
≤ π

∂(g(aF , θ)− h(aF , aG, θ))

∂aG
= pG,

where the last inequalities follow from the fact that (aF , aG) is an optimal decision given

(pF , pG). Both inequalities become strict unless (âF , âG) = (aF , aG), in which case we have a

contradiction. If (âF , âG) = (aF , aG), then the first inequality becomes strict, which violate

the first order condition under ATT.
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The last statement follows from fact that

tu(aF , aG; θ, pF , pG) + (1− t)û(aF , aG; θ, pF , pG)

is supermodular in (θ, t), which implies that the corresponding indirect objective function

indexed by parameters (θ, t) is also supermodular.

The implication is clear. After the shift, the firms substitute their ad purchase away from

F toward G, and all firms are worse off, and the firms with higher θ suffer higher losses.

F.2 Equilibrium of Ads Markets

We now consider the market equilibrium. First, we assume that each firm incurs fixed cost

κ > 0, so the firm that never earns enough to cover the cost will exit the market.

Let π(θ) denote marginal active type (π, θ) such that v(π(θ), θ, pF , pG) = κ. Then, the

demand for platform i = F,G is

Di(pF , pG) :=

∫ 1

0

∫ ∞

π(θ)

ai(π, θ, pF , pG)ϕ(π|θ)dπϕ(θ)dθ.

By Proposition 1, the ad demand for F , DF (pF , pG), is decreasing in (pF ,−pG), and the

ad demand for G, DG(pF , pG), is increasing in (pF ,−pG).

We assume platforms i = F,G, incurs costs ci(Ai) for delivering total mass of ads Ai,

where ci is increasing and strictly convex.

We consider that markets are competitive so that ad prices are determined at levels that

clear the markets: (pF , pG) are market-clearing or equilibrium if

pF = C ′
F (DF (pF , pG)) and pG = C ′

G(DG(pF , pG)).

Proposition 3. Suppose the advertising technology shifts from (f, g) to (f̂ , g) as assumed

in Assumption 4. The equilibrium exists both before and after the change. The equilibrium
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prices change from (pF , pG) to (p̂F , p̂G), where p̂F < pF . In equilibrium, D̂F (p̂F , p̂G) <

DF (pF , pG).

Proof. Suppose to the contrary p̂F ≥ pF . There are two possibilities. Suppose first p̂G ≤ pG.

In this case, note first that, for each type (π, θ),

âF (p̂F , p̂G, π, θ) < aF (p̂F , p̂G, π, θ) ≤ aF (pF , pG, π, θ),

where the first inequality follows from Proposition 2, and the second follows from Proposi-

tion 1-(i). Consequently, we have

D̂F (p̂F , p̂G) =

∫ 1

0

∫ ∞

0

âF (π, θ, p̂F , p̂G)ϕ(π|θ)dπϕ(θ)dθ

<

∫ 1

0

∫ ∞

0

aF (π, θ, pF , pG)ϕ(π|θ)dπϕ(θ)dθ

= DF (pF , pG).

Then, we have

p̂F = C ′
F (D̂F (p̂F , p̂G)) < C ′

F (DF (pF , pG)) = pF ,

where we use the market clearing condition and the convexity of CF . We thus have a

contradiction.

Next, p̂F ≥ pF and p̂G > pG. Then, by Proposition 1-(iv), we have, for all (π, θ),

∑
i=F,G

ai(pF , pG, π, θ) >
∑
i=F,G

ai(p̂F , p̂G, π, θ) ≥
∑
i=F,G

âi(p̂F , p̂G, π, θ).

This means that

∑
i=F,G

Di(pF , pG) >
∑
i=F,G

Di(p̂F , p̂G) ≥
∑
i=F,G

D̂i(p̂F , p̂G).

Hence, either DF (pF , pG) > D̂F (p̂F , p̂G), or DG(pF , pG) < D̂G(p̂F , p̂G). The former will again
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contradict p̂F ≥ pF , whereas the latter will contradict p̂G ≥ pG.

The richness of the heterogeneity and the general equilibrium limits the extent to which

the effect of ATT on the equilibrium outcome is characterized analytically. Nevertheless, we

can summarize the results and their implications as follows:

1. Proposition 2 shows that at the individual firm level, ATT causes firms (advertisers) to

substitute away from the Facebook network to the Google network, all else including

ad prices equal.

2. Proposition 2 also shows that all else equal, including ad prices, ATT causes revenue

loss for all firms but more so with higher Facebook dependency (i.e., higher θ).

3. Proposition 3 analyzes the general equilibrium effect: with ATT, the price of Facebook

ads and their overall demand/quantity fall.

4. While the richness of the model limits the analytical results to those stated in Propo-

sition 3, we can draw further implications.

(a) The second statement of Proposition 3 means that a significant proportion of, or

possibly all, firms reduce their purchase of Facebook ads. This will likely imply

that the equilibrium price of Google ads goes up after the ATT shock. To see this,

suppose otherwise. Those firms that reduce their purchase of Facebook ads must

increase their demands of Google ads, which follows from the submodularity of

payoff function in (aF , aG) together with Assumption 4-(ii). As long as this effect

is significant, the equilibrium price of Google ad will be higher.

(b) This last point also makes it plausible that the relative expenditure for Face-

book ads to that for Google ads falls with the ATT shock. The substitution

effect derived in Proposition 2 together with the market-wide effect obtained in

Proposition 3 mean that unless the Google ad price goes up too high, the relative
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proportion of the spending for Facebook ads relative to Google ads likely falls

after the ATT shock.
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