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Abstract

We analyze a coordination game with information-constrained players. The players’ ac-

tions are based on a noisy compressed representation of the game’s payoffs in a particular

case, where the compressed representation is a latent state learned by a variational autoen-

coder (VAE). Our generalized VAE is optimized to trade off the average payoff obtained over

a distribution of possible games against a measure of the congruence between the agent’s in-

ternal model and the statistics of its environment. We apply our model to the coordination

game in the experiment of Frydman and Nunnari (2023), and show that it offers an explanation

for two salient features of the experimental evidence: both the relatively continuous variation

in the players’ action probabilities with changes in the game payoffs, and the dependence of

the degree of stochasticity of players’ choices on the range of game payoffs encountered on

different trials. Our approach also provides an account of the way in which play should grad-

ually adjust to a change in the distribution of game payoffs that are encountered, offering an

explanation for the history-dependent play documented by Arifovic et al. (2013).
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1 Introduction

An ubiquitous feature of economic decisions observed in the laboratory is that people’s decisions
appear to be random, as a function of the objective data defining the choice problem. The same
experimental subject, confronted again with exactly the same decision, will often not make the
same choice as on previous occasions. Thus one must study, not what a given person will always
choose when presented with options with particular characteristics, but the probabilities with which
they will make alternative choices. A model of the subject’s choice behavior should seek to explain
how these probabilities vary with the characteristics of the options presented (Woodford (2020)).

A popular model of imprecise decision making is the rational inattention (RI) model of Sims
(2003). According to this theory, decisions are based on an imprecise awareness of the specific
situation in which the decision maker acts. The action is optimal (maximizes the decision maker’s
expected payoff, under some prior distribution over possible situations), subject to its having to be
based only on a compressed representation of the current state, rather than an exact description of
the state; and the compressed representation itself is also optimal, subject only to a limit on how in-
formative it can be about the true state. Whenever there is a positive cost of information, RI implies
that an optimal compressed representation necessarily involves randomization; it thus provides an
explanation for the observed stochasticity of choice. RI is also a highly parsimonious theory; if
one assumes, with Sims, that the cost of more informative representation should be proportional
to the Shannon mutual information between the external state and its internal representation, the
model has only a single free parameter (the cost per additional bit of information), and makes
correspondingly sharp predictions.

But the theory as formulated by Sims leaves open the question of how the optimal compressed
representation, and the associated optimal rule for action choice based on the compression repre-
sentation, are supposed to be learned for a given environment (defined by a prior distribution over
possible decision problems). RI posits that the action associated with any latent state is the one
that maximizes the decision maker’s expected reward under the posterior distribution over possible
external states associated with that latent state; but this raises the further question of how these
posteriors are learned.

We propose an alternative model of imprecise decision making with an explicit (and compu-
tationally tractable) account both of how compressed internal representations are learned, and of
how a distribution over possible external states for each latent state (to be used in action selection)
is learned. Our model is based on a popular architecture from the machine learning literature — the
“variational autoencoder” (VAE) introduced by Kingma and Welling (2014) — with the criterion
used to train the model modified to take account of the usefulness of the internal representations for
making better decisions (as in RI). A VAE consists of two statistical models: a recognition model

1



that assigns to any external state x a latent state j from some set J of possible representations, and
a generative model that associates with each latent state j a particular probability distribution of
possible external states, which distribution is used (like the posterior distribution in RI) to interpret
what the internal representation tells one about the external state. Each of these models is assumed
to belong a parametric family of possible statistical models (frequently, a neural network model
with some number of tunable connection weights), and the parameters of the models are iteratively
adjusted so as to minimize an objective function that is evaluated using the finite sample of values
{xi} for the external state in some training dataset (Kingma et al. (2019)).

In the classic VAE formulation, the training objective seeks to achieve as great as possible a
congruence between the joint distribution over latent states and external states predicted by the
generative model and the joint distribution that results from using the recognition model to clas-
sify the external states occurring in the training database. Because both models must be selected
from particular parametric families, perfect congruence will generally not be possible. (Perfect
congruence is instead assumed in RI, insofar as the interpretation of the latent states is assumed
to be based on exact Bayesian inference.) It would not make sense, however, to demand perfect
congruence when the training dataset is itself only a finite sample from the prior distribution, and
thus only an approximation to the true distribution; contenting oneself with only finding the best fit
within a parametric family of models allows one to avoid over-fitting to the particular sample val-
ues in the training dataset. The fact that we consider only a finitely-parameterized class of possible
models also makes it possible for all of the parameters to be learned from a finite training dataset.

In the applications that motivated this proposal, the goal is simply to be able to reconstruct
the external state as accurately as possible on the basis of the compressed internal representation.
One might, however, use the interpretation of the latent states provided by the generative model
to select other kinds of responses, the payoff to which depends on the degree of suitability of the
action a that is selected for the external state x. To deal with such cases, we add to the usual
VAE training objective a second term, the average reward obtained from actions chosen on the
basis of the compressed representation, with a weight that reflects the relative importance assigned
to the two considerations in adapting one’s internal model to one’s environment.1 In general, we
find that there is a non-trivial trade-off between the two subgoals represented by the two terms
in our training objective: the compressed representations that will allow the greatest degree of
congruence between the two models are not generally exactly the same as those that would allow
the most accurate state-contingent action selection.

This tradeoff then implies that our cognitive model, even when fully trained on the basis of an
arbitrarily large training dataset, will often imply imprecise (and more specifically, random) deci-

1Other recent proposals that generalize the VAE architecture to include the rewards achieved from action selection
in the objective used for training include Malloy et al. (2022) and Tucker et al. (2022).
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sion making. Even when a precise classification of states, of the kind needed for perfectly accurate
state-contingent action selection, is allowed by the parametric family of recognition models that is
considered, an imprecise classification (implying correspondingly imprecise action selection) may
be selected by the training objective because it allows greater congruence between the recognition
model and the generative model. The preference for congruence between the two models can thus
serve as a substitute for the information cost function in RI theory.

Our alternative model has advantages over RI theory as an account of how imprecise internal
representations are endogenously adapted to the statistics of a particular environment, that begin
with its greater computational tractability and the fact that it comes with a model of how the
internal representations are learned. But there are other advantages as well, that are well illustrated
by an application of the model to observed behavior in an experimental coordination game. The
coordination game that we consider is a two-player, one-shot simultaneous-move game studied
experimentally by Frydman and Nunnari (2023); it represents a stylized version of the kind of
strategic interaction that arises in the case of a bank run or a speculative attack on a currency peg.
The payoff matrix in the game depends on a state variable x that varies from trial to trial in the
experiment (an independent draw on each trial from some prior distribution), but is revealed to the
players before they choose their actions.

Players’ action choices are observed to be random in the case of a given value of x, but with
their action probabilities varying systematically with x: the probability of a “run” occurring (or
of an “attack” on the currency peg) is steadily increasing as “economic fundamentals” deterio-
rate. RI theory can explain the randomness of behavior in what would seem to be a game with
full information (and that does not vary with x in the way that a mixed-strategy Nash equilibrium
would). However, application of RI theory to the game, as in Yang (2015), implies that action
probabilities should jump discontinuously at one or more particular values of x,2 while in exper-
imental data the probabilities appear to change only gradually with progress changes in x. And
RI theory implies that varying the dispersion of the values of x in the prior distribution should not
change the equilibrium choice probability associated with a given value of x, while Frydman and
Nunnari (2023) show that drawing values of x from a more dispersed distribution makes choice
probabilities change more gradually with increases in x.

Our model instead predicts that the choice probability should be a continuous function of x,
and that it should be a more gradually decreasing function in the case of the more dispersed prior,
in conformity with the experimental evidence.3 We believe that these are additional reasons for

2See section A of the Appendix for discussion of why this is the case.
3Frydman and Nunnari (2023) also present a model of endogenous variation in the precision of a noisy internal

representation of the state that is consistent with both of these aspects of their data, based on a model of efficient
coding. Our interpretation of the experimental data is broadly consistent with theirs, but we optimize over a more
flexibly specified family of possible internal representations. In particular, their formulation requires the precision of
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interest in the particular way that we propose to model information-constrained decision making.

2 Modeling Imprecise Action Selection

In this section we provide the details of our computational model of imprecise action selection.
We first provide an overview of our approach in the context of an individual decision problem in
which a decision maker (DM) must select an action a from some finite set A of possible actions,
and the payoff from the action chosen depends on a state x, which can take any of a continuum of
values, and to which the DM may be imperfectly attentive. We then extend the model to deal with
the case of strategic interaction between two players who choose their actions simultaneously, as
in the coordination game treated in the next section.

2.1 A VAE Model of Individual Decision Making

We consider a decision problem in which an external state x is drawn independently on each
occasion (each experimental trial) from a continuous frequency distribution π(x). On a given
occasion, the current state x is encoded as one of a finite set J of possible latent states; the bound
on the number of possible latent states is taken as a constraint. The VAE structure (Kingma and
Welling (2014), Kingma et al. (2019)) consists of a recognition model, or encoding model, that
specifies the conditional probabilities p(j |x) of assigning any state x in the support of the prior
to a given latent state j, and a generative model, or decoding model, that is used to interpret the
meaning of a given latent state in terms of a distribution of possible external states that may have
given rise to it.

The recognition model is specified by conditional probabilities pϕ(j|x), defined for each possi-
ble external state x. Here ϕ is a finite-dimensional vector of parameters, indicating which member
of some parametric family of possible encoding rules is used; the recognition model is optimized
only within this family. The encoding rule, combined with the environmental distribution π(x),
implies a joint distribution for external states and their labels given by

pϕ(j, x) = π(x) · pϕ(j |x).

The generative model also specifies a joint distribution for the labels and states, parameterized by a
finite-dimensional vector of parameters θ. It consists of learned frequencies of occurrence {qθ(j)}

encoding to be the same for all values of x, so that the kind of internal representation required for perfectly accurate
choice is precluded as infeasible. We instead allow encoding rules that can make arbitrarily sharp distinctions between
values of x above and below a particular threshold, and hence that can approximate arbitrarily well the distinction
between high-x and low-x states that is required for perfectly accurate choice.
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for each of the latent categories, and a learned distribution of external states p̃θ(x |j) for each of
the categories. The implied generative model for the joint distribution of external states and their
labels is then given by

p̃θ(j, x) = qθ(j) · p̃θ(x |j).

The process by which a system of compressed internal representation is learned involves ad-
justing the parameters ϕ and θ of the two models so as to achieve as close as possible a degree
of congruence between these two different joint distributions of labels and states. Given exposure
to a body of experience of values for the external state {xi}, the recognition model assigns labels
to them (generally in a probabilistic way), resulting in a database of labeled observations {xi, ji}
that can be used to “train” the generative model. Here the goal is to find parameter values θ for
which the generative model provides a good description of the database of labeled observations.
At the same time, sampling values from the joint distribution of labels and states specified by the
generative model can produce a database of simulated observations that can be used to “train” the
recognition model. In this case the goal is to find parameter values ϕ so that any observation x will
be mapped to a frequency distribution of labels j similar to the frequency with which states near
x are assigned the label j in data sampled from the generative model. Thus the parameters (ϕ, θ)
can be jointly learned through an iterative updating process (discussed in section 7), in which the
parameters θ are adjusted so as to better fit the joint distribution generated on the basis of external
experience and the current parameter values ϕ; the parameters ϕ are then adjusted so as to better fit
the joint distribution generated on the basis of the current parameter values θ; and so on until both
parameter vectors converge.

In typical applications of VAE modeling, the model once trained is used to classify new ob-
servations, assigning to any observation x a compressed representation j; this then allows recon-
struction of the external state (generation of an estimated value x̂) on the basis of the compressed
representation, by sampling from the distribution p̃θ(x |j) provided by the generative model. We
can however use the same architecture to model a decision maker that must choose an action a
from a set A that need not correspond to different possible values of the external state. We do this
by adding to the VAE structure a decision rule that specifies an action a(j) ∈ A for each of the la-
tent states j.4 The decision rule is learned on the basis of simulations of the generative model; that
is, for each latent state j, the system learns an action a(j) that should be desirable if the external
state is drawn from the distribution p̃θ(x |j). Thus in our case, as in more standard applications of

4More generally, one might suppose that the decision rule specifies a probability distribution over A for each
latent state j. But in the kind of problems with which we are concerned here, there will be no advantage for a DM in
randomizing their response conditional on a given latent state, and we simplify both our notation and our discussion of
learning by supposing that the algorithm only considers deterministic decision rules. The randomness of experimental
subjects’ observed responses conditional on the external state x will then have to be attributed entirely to randomness
of the classification of states by the recognition model, as in RI analyses.
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VAEs, the latent state is “decoded” using the generative model, treating the distribution p̃θ(x |j) as
a sort of “posterior belief” when the external state is internally represented by the latent state x.

2.2 Alternative Training Objectives

As just explained, a key idea is that the parameters ϕ and θ should both be adjusted to achieve
as great as possible a degree of congruence between the joint distributions of labels and states
implied by the recognition model and generative model respectively. A natural approach would be
to follow Kingma and Welling (2014); Kingma et al. (2019) and suppose that ϕ and θ are jointly
optimized so as to minimize the Kullback-Leibler divergence of the joint distribution implied by
the encoder relative to that implied by the decoder, DKL(pϕ(j, x)||p̃θ(j, x)).

Note that as a mathematical identity we can write

DKL(pϕ||p̃θ) = DKL(qϕ||qθ) +
∑
j

qϕ(j)DKL(πϕ(·|j) || p̃θ(·|j)), (1)

where qϕ(j) is the frequency with which the label j occurs in the joint distribution pϕ,

qϕ(j) ≡
∫
pϕ(j, x) dx, (2)

and πϕ(x |j) is the posterior probability that the state is x when the label is j, again as implied
by the joint distribution pϕ. Thus if the parametric family of possible generative models p̃θ is
flexible enough to include this possibility, DKL(pϕ||p̃θ) is minimized by choosing qθ = qϕ and
p̃θ(·|j) = πϕ(·|j) for each j. Hence even when the family of possible generative models does
not allow precisely this solution, choosing θ so as to minimize DKL(pϕ||p̃θ) can be regarded as
a variational approximation to the interpretation of the latent states that would be given by exact
Bayesian inference, using correct knowledge of both the distribution from which the external states
are drawn and the probabilistic classifications produced by the recognition model ϕ.

Moreover, if we use a finite sample from pϕ as the “empirical distribution” pemp to which we
wish to make p̃θ congruent, then choosing θ to minimize DKL(p

emp||p̃θ) is equivalent to choosing
the parameters θ to maximize the likelihood (under the generative model) of the sample. Thus
choosing θ to minimize this objective amounts to maximum likelihood estimation of the parameters
of the generative model.

Similarly, suppose that we fix the generative model θ, and for any recognition model ϕ, define
the joint distribution

p̂ϕ(j, x) = πθ(x) · pϕ(j |x),

where πθ(x) is the marginal distribution for x implied by the generative model. Then it is also a
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mathematical identity that

DKL(p̂ϕ||p̃θ) = Eθ[DKL(pϕ(·|x) || p̃θ(·|x))],

where p̃θ(j|x) is the conditional probability of the label being j when the state is x, according to the
generative model, and Eθ[·] denotes an expectation over values of x drawn from the distribution
πθ. It follows that if the state x is drawn from a distribution that is correctly described by the
generative model, and the family of recognition models considered is flexible enough to allow this,
DKL(pϕ||p̃θ) will be minimized by choosing the encoding rule to be pϕ(j|x) = pθ(j|x) for each
state x. Thus the proposed learning process would lead to an encoding rule that classifies a state
x on the basis of Bayesian inference about the latent state j that has given rise to it, under an
assumption that the generative model correctly describes the process through which states x arise
(so that there can be thought to be a “true” latent state to infer from the observation of x), as in
Helmholtz’s theory of perceptual judgments. Even when the family of possible encoding models
does not allow precisely this solution, choosing ϕ so as to minimize DKL(pϕ||p̃θ) can be viewed as
a variational approximation to a model of perceptual classification of this kind.

But as noted by Bowman et al. (2016); Chen et al. (2017), training the VAE in this way ensures
that the generative model will provide a reasonable approximation to the environmental distri-
bution π(x), but does not necessarily lead to a meaningful latent representation. Indeed, in the
example that we present below, training our model to minimize DKL(pϕ||p̃θ) leads to latent states
that are completely uninformative about the external state x. A cognitive model of this kind is
clearly not useful as a basis for action choice. Much of the recent VAE machine learning literature
follows Alemi et al. (2018), who propose extending the objective function used in Kingma and
Welling (2014); Kingma et al. (2019) to explicitly incentivize the model to learn a more mean-
ingful representation. Their “β-VAE” approach allows for more “disentangled” representations by
providing an additional bonus for classification schemes in which the different categories are more
informative about the underlying stimuli (the objective proposed in “infomax” theories of efficient
coding).

For applications of the kind that we consider here, however, it is more natural to provide a
bonus not simply for encoding rules that differentiate between different external states, regardless
of whether the particular external states that they distinguish are ones that the DM needs to tell
apart in order to make good decisions, but instead to provide a bonus for encoding rules that
support more efficient action selection. Suppose that the DM suffers a loss L(a;x) from choosing
action a when the external state is x.5 Then for any recognition model ϕ and generative model θ,

5Here we specify the DM’s problem in terms of minimization of expected loss rather than maximization of ex-
pected reward, to conform to the typical specification of the training objective in the VAE literature as a criterion to be
minimized.
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we can compute
L ≡ E[L(a(j); x)], (3)

the expected loss when decisions are made using this VAE and an arbitrary decision rule a(j).
Here E[·] refers to an expectation over the values of (j, x) when x is drawn from the environment
and j is assigned by the recognition model.

Our proposed model of information-constrained choice assumes that the parameters of the VAE
are adjusted so as to solve the problem

min
ϕ,θ

DKL(pϕ||p̃θ) + βL, (4)

where L is the expected loss measure defined in (3) and β > 0 indicates the relative weight placed
on the two desiderata in the training objective. A key goal of our analysis is to characterize the
trade-off between the two alternative objectives reflected in (4), and hence the way in which pre-
dicted behavior varies depending on the size of β. Here we have defined the problem of optimally
training the VAE, for a given decision rule a(j), but we can also optimize the decision rule so as to
achieve the lowest possible value of the training objective (4).

While our primary interest in decision processes that minimize (4) for one value of β or another,
it may also be of interest to consider a more general form of training objective. Alemi et al. (2018)
note that the traditional VAE training objective can be expressed as

DKL(pϕ||p̃θ) = −H + D + R,

where
H ≡ −E[log π(x)]

is the entropy of the prior distribution for x,

D ≡ −E
[∑

j

pϕ(j|x) log p̃θ(x|j)
]

is a cross-entropy measure of the average distortion involved in decoding the latent states using the
generative model θ, and

R ≡ E[DKL(pϕ(·|x)||qθ)] (5)

is the rate at which information must be transmitted over a channel that takes x as an input and
yields a random classification j as its output, when the operation of the channel is optimized for a
frequency distribution qθ of occurrence of the different output signals. Since H is independent of
the VAE parameters, the traditional VAE objective is equivalent to minimizing the value of D+R.
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Alemi et al. (2018) propose that, rather than requiring that equal weight be put on the mini-
mization of the terms D and R, as in the objective proposed by Kingma and Welling (2014), one
can train a VAE by minimizing a generalized objective D+ βR, where the positive weight β need
not equal 1. (This is their “β-VAE” model.) Regardless of the value of β > 0, the probabilities
qθ that minimize this objective will be given by qθ = qϕ, in which case R is equal to the Shannon
mutual information between the external state x and the internal representation j. A value β < 1

thus corresponds to assigning a bonus to internal representations that are more informative, for any
given value of DKL(pϕ||p̃θ).

We can allow for this concern as well, by letting the parameters of the VAE be adjusted so as
to solve a more general problem of the form

min
ϕ,θ

D + β1R + β2L, (6)

where β1, β2 are both positive coefficients. This family of models nests the “β-VAE” of Alemi
et al. (2018) as a limiting case (the one in which β2 = 0). If we instead write (6) in the form

min
ϕ,θ

DKL(pϕ||p̃θ) + (β1 − 1)R + β2L, (7)

we see that our basic model is another special case of it (the one in which β1 = 1). An assumption
that β1 < 1 implies a preference (other things being equal) for more informative (more “disentan-
gled”) internal representations, while an assumption that β1 > 1 would instead imply an aversion
(other things being equal) to more informative (more “complex”) internal representations. While
the β-VAE literature argues for specifications with β1 < 1, RI models assume that β1 > 1.6

RI theory assumes that β1 > 1 because (under further assumptions of those models) it is only in
this case that the theory implies that decision making should be at all imprecise. We instead show
that our model can predict stochastic action selection even with β1 ≤ 1 (see section 6.1 below), if
the generative model must be selected from a restricted family. The β-VAE literature argues for
assuming that β1 < 1 because (in some cases) β1 ≥ 1 implies that the optimal structure will involve
a completely uninformative latent state. This is indeed true in our model (see section 5.3 below), if
we assume that β2 = 0, as in the model of Alemi et al. (2018); but we show that the optimal latent
state in our model is informative, even when β1 ≥ 1, when we assume that β2 > 0. Thus while the
most general formulation of our model allows us to consider values of β1 either larger or smaller
than 1, assuming a value different from 1 is not important for any of our qualitative conclusions.

6See Appendix section A for further discussion.
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2.3 Extension to a Setting with Strategic Interaction

Suppose now that multiple information-constrained DMs each choose actions simultaneously, and
that each one’s reward will depend on the actions chosen by all. To simplify notation, we consider
the case of a two-person game (as in the application below). Suppose that a player who chooses
action a will suffer a loss L(a, a′;x) if the other player chooses action a′ and the external state is
x. We can again suppose that a player’s action must be based on their internal representation j of
the external state. This internal representation is generated by a recognition model, and decoded
using a generative model, just as in the individual decision problem discussed above.

We again consider the problem of optimally training the players’ VAEs, taking as given their
respective decision rules a(j) and a′(j′). The congruence measure DKL(pϕ||p̃θ) in each player’s
training objective again depends only on the player’s own VAE parameters (ϕ, θ), and the prior dis-
tribution π(x) for the external state. However, the loss measure L for a given player now depends
not only on their own recognition model (and their decision rule), but also on the other player’s
recognition model (and that player’s decision rule). The definition (3) must now be generalized to
state that

L ≡ E[L(a(j), a′(j′); x)], (8)

where E[·] now refers to an expectation over the values of (j, j′, x) when x is drawn from the
prior, j is assigned by the player’s own recognition model ϕ, and j′ is assigned by the opponent’s
recognition model ϕ′. Each player’s VAE is trained to minimize the objective (4) as above, but now
using the definition (8) for the expected loss term.

Under this proposal, each player has a VAE of their own, the parameters of which are trained
based on data (observations of the external state) generated by the environment, but also based on
the observed actions of the other player — which depend on the other player’s recognition model.
Thus the two VAEs are coupled systems, each producing data that are used to train the other
one. The state of belief to which the process converges will thus represent a sort of information-
constrained Nash equilibrium.

As in the case of the individual decision problem, we can generalize the model by assuming that
each player’s VAE is adjusted to solve the problem (7) rather than (4). In this case, there are two
parameters β1, β2 to specify the relative weights placed on the alternative stabilization objectives.

3 A Coordination Game

Here we apply our method to a coordination game studied experimentally by Frydman and Nunnari
(2023). Two players each choose whether to “stay” or “leave.” By leaving, either player can
guarantee for themselves an amount that is independent of what the other does; if instead they stay,
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they obtain a payoff that is larger if the other player also chooses to stay. This captures the essential
strategic logic of situations like bank runs or a speculative attack on a currency peg.7 Games of this
kind have been extensively studied, both theoretically (e.g., Morris and Shin (2003), Yang (2015))
and in laboratory experiments (e.g., Heinemann et al. (2004), Heinemann et al. (2009), Arifovic
et al. (2013), Arifovic and Jiang (2019)). We begin by reviewing the structure of the game, and
then describe how our approach can be applied to it.

3.1 The Game and its Symmetries

The payoffs in the game considered by Frydman and Nunnari (2023) are of the form shown in
Table 1.8 Here the payoffs a and b that are obtained by a player that chooses to stay satisfy b > a,

and are the same on every trial; the parameter θ (the value of the outside option) instead varies
randomly from trial to trial. Because a and b are always the same, a cognitive system that is
optimized for the prior distribution over possible games that can be faced in the experiment will be
optimized for these particular values (while it must instead allow for random variation in θ); and
here we simplify our discussion of adaptation by supposing that the values of a and b are known
precisely, rather than having to be learned.9

Table 1: Coordination Game

Leave Stay
Leave θ, θ θ, a
Stay a, θ b, b

Assuming that the DM’s objective is to maximize their expected payoff, the strategic consid-
erations in a game of this kind are unchanged if we re-scale payoffs using any monotonically
increasing affine transformation.10 We thus use normalized payoffs from here on in our analysis,
so that our numerical results are equally applicable to any game of this kind, regardless of the

7Models of these phenomena generally assume a large number of players who make simultaneous decisions,
perhaps even a continuum, with the payoff of an individual player depending both on their own action and on the
aggregate action of the mass of other players. However, the essential issues raised by such models can be analyzed
using a two-player game, as for example in (Yang (2015)).

8In their case, the parameters are equal to a = 47 and b = 63.
9We could suppose that the DM must learn a generative model of the joint distribution of these parameters along

with θ and the other player’s action frequencies; but since in the training sample it should be observed that the numeri-
cal values of a and b are always the same, the DM should learn a generative model in which these parameters are only
able to take those specific values. We simplify our notation by not having to specify beliefs about these parameters as
part of the generative model.

10To state this more precisely: action probabilities πrow for the row player and πcol for the column player represent
a Nash equilibrium of the original game if and only if the pair (πrow, πcol) are a Nash equilibrium for the game with
the transformed payoffs.
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numerical values of a and b in any particular application.11 Specifically, we choose a scale for the
payoffs in terms of which a is represented by the value −2 and b is represented by the value +2.
We let the value of θ in terms of these rescaled units be denoted 2x. Thus the random real number
x is proportional to the amount by which θ is greater than the midpoint between a and b on a given
trial.

We further observe that the strategic analysis of such a game is unchanged if we add some
amount to a player’s payoffs that may depend on what their opponent does, but that (for any choice
by the opponent) is the same regardless of what they themselves do.12 Thus we obtain an equivalent
game if we add −x+ 1 to a player’s payoff in the event that their opponent leaves, and an amount
−x − 1 to their payoff in the event that their opponent stays. With this modification, the payoff
matrix becomes the one shown in Table 2. We can without loss of generality suppose that the
payoff matrix is this latter one. To any equilibrium of the game with the payoff matrix shown in
Table 1, there must be a corresponding equilibrium of the game with the payoff matrix shown in
Table 2; thus it suffices to study the equilibria of the latter game.

Table 2: The Game with Transformed Payoffs

Leave Stay
Leave x+ 1, x+ 1 x− 1, −x− 1
Stay −x− 1, x− 1 1− x, 1− x

The advantage of using the transformed payoff matrix shown in Table 2 is that it makes clear
the symmetries of this kind of game. First, it is already evident from Table 1 that the payoff matrix
is invariant under a transformation that reverses the labels of the two players. But it is evident in Ta-
ble 2 that there is a second symmetry as well: the payoff matrix is invariant under a transformation
that (i) reverses the labels of the two possible actions, for both players, and (ii) reverses the sign of
x. Because of these symmetries, if there is an equilibrium in which the row player chooses to stay
with probability p(x) when the state is x, and in which the column player chooses to stay with prob-
ability q(x), then we know that there must also be three additional equilibria: not just (p(x), q(x)),
but also (q(x), p(x)), and in addition (1 − p(−x), 1 − q(−x)) and (1 − q(−x), 1 − p(−x)). As
we discuss below, the set of equilibria of the game between boundedly-rational players modeled
by VAEs is invariant under these same transformations, under some (relatively weak) assumptions
about the classes of parametric models that are considered by the VAEs.

11Note however that the numerical value of the weight β2 associated with a particular solution will change when
the scale of the values in the payoff matrix is different.

12Again, a change in the payoff matrix of this kind results in no change in the set of pairs (πrow, πcol) that constitute
Nash equilibria. It similarly has no consequences for our analysis of boundedly-rational equilibria, since the term L
in our proposed training objective (the only term that involves the game payoffs) depends only the differences ∆U
between the payoffs received by a given player under different possible actions, holding fixed the action of the other
player.
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Figure 1: The equilibrium correspondence in the case of common knowledge of the external state.

3.2 The Imprecision of Observed Behavior

We first consider what equilibrium behavior should be like in the case that players are able to
respond precisely to the value of x on a given trial (and to the way that their opponent plays in that
state). To simplify the discussion, we consider only equilibria that are invariant under an exchange
of the labels of the two players (one of the two symmetries discussed above). Thus we assume that
q(x) = p(x), and ask what the function p(x) must be like in an equilibrium.

Given a value of x (that we assume for now to be common knowledge between the two players),
if the other player chooses to stay with probability p, then a player’s expected payoff from staying
exceeds their expected payoff from leaving by the amount

∆U = 2[(2p− 1) − x]. (9)

It is thus strictly preferable for the player to stay in the case of any pair (x, p) above and to the left
of the diagonal dotted line in Figure 1, and strictly preferable for the player to leave in the case
of any pair below and to the right of the line. We can then use the figure to graph the equilibrium
correspondence: the set of pairs (x, p) with the property that if the external state is x and the
other player stays with probability p, it is a best response for oneself to stay with probability p as
well. This correspondence consists of the set E of points identified by the thick bars in Figure 1 (a
Z-shaped graph).

A function p(x) specifying the state-contingent (and probabilistic) behavior of each of the
players then represents a symmetric equilibrium of the game specified by the payoff matrix in
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Figure 2: State-contingent behavior in the experiment of Frydman and Nunnari (2023).

Table 2 if and only if p(x) is a single-valued function defined for all x on the real line, the graph
of which belongs entirely to the equilibrium correspondence E shown in Figure 1. It is evident
from the figure that we cannot have such a function, unless it involves a discontinuous jump at at
least one value of x. If there is only one jump, it must be a downward jump at some value x̄, with
p(x) = 1 for all x < x̄, and p(x) = 0 for all x > x̄. The unique solution of this kind that also
satisfies the other symmetry discussed above (i.e., such that p(−x) = 1− p(x) for all x) is the one
in which x̄ = 0.

This kind of discontinuous behavior obviously requires extreme precision in the players’ recog-
nition of the value of the state x, and it is not what we see in experimental implementations of such
games. As an illustration, Figure 2 plots data from the experiment of Frydman and Nunnari (2023),
using the normalized state space notation introduced here. The vertical axis plots the frequency
with which players choose to stay, as a function of that trial’s value of x on the horizontal axis. The
two curves are data from two alternative treatments, that differ only in the value of ω, the standard
deviation of the prior distribution. (In their “low volatility” treatment, ω = ωlow ≡

√
5/2, while

in the “high volatility” treatment, ω = ωhigh ≡ 5 in our normalized units.13) In neither treatment
do we observe that the probability of staying drops discontinuously from p(x) = 1 to p(x) = 0 at
some critical value x̄; instead, in both cases the probability of staying falls gradually over the range
from x = −1 to x = 1. Neither graph can be a selection from the equilibrium correspondence
shown in Figure 1; similar gradual declines are observed in other experiments such as those of
Heinemann et al. (2004).

13The two alternative priors are shown graphically in top left panel of Figure 12 in the Appendix.
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4 The Coordination Game with VAE Players

We now consider the implications of applying the VAE model from section 2 to this coordination
game. In order to apply the model, we must choose specific parametric families of recognition
and generative models. In this section, we confine ourselves to the characterization of equilibria
of the game between VAEs, without asking how such coordination of the two VAEs occurs. Later
(in section 7), we discuss the way in which the players’ VAE parameters can be learned from a
training dataset generated by their own play.

4.1 Symmetries and Equilibria of the Game Between VAEs

In section 3.1 above, we have discussed the symmetries of our coordination game when it is as-
sumed that the value of x is observed precisely by both players, so that their action probabilities
can be conditioned upon it. In this case it is possible to define what it means for the strategy for
the row player defined by a function p(x) to be a best response to the strategy for the column
player defined by function q(x) by considering play in each individual state x separately. Hence
the set of equilibria is independent of any assumption about the prior from which the values of x
are drawn, and no symmetry assumption on the prior was needed for us to conclude that the set of
equilibria should be invariant under two different symmetry transformations. If we assume instead
that actions must be conditioned upon a coarse latent state rather than the exact value of x, slightly
stronger assumptions are needed in order to demonstrate the invariance of the set of equilibria un-
der these transformations; but corresponding symmetries continue to exist under some relatively
simple assumptions.

The game between VAEs possesses the first symmetry (invariance under reversal of the labels
of the players) if we suppose that the classes of possible specifications of two players’ VAEs are
the same (as we shall assume below): if parameters (ϕ, θ) represent a possible VAE for the row
player, they also represent a possible VAE for the column player, and vice versa.

The game between VAEs will also possess the second symmetry under some additional as-
sumptions. First, we must assume that x is drawn from a symmetric prior, i.e., a prior density with
the property that π(x) = π(−x) for all x. In our main analysis (everywhere except in section 7.2
below), we assume a prior of the form N(0, ω2), for some value of ω; note that the two treatments
in the experiment of Frydman and Nunnari (2023) are both of this form, for different values of ω.
In this case, the symmetry assumption is satisfied.

Second, we assume that there exist symmetry transformations, associating with each latent
state j a corresponding state j∗, and with VAE (ϕ, θ) a corresponding VAE (ϕ∗, θ∗), such that (i)
the transformations are invertible: (j∗)∗ = j for all j, and similarly (ϕ∗)∗ = ϕ and (θ∗)∗ = θ;
and (ii) pϕ(j |x) = pϕ∗(j∗ | − x), qθ(j) = qθ∗(j

∗), and p̃θ(x |j) = p̃θ∗(−x |j∗) for all (j, x). (This
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assumption is a restriction upon the parametric families of possible recognition and generative
models, and is satisfied by the parametric families assumed in our numerical examples below.)
The transformed version of any decision rule is correspondingly specified by defining a∗(j∗) to be
the action opposite to a(j), for any latent state j.

Under these additional assumptions, the game between VAEs possesses the second symmetry
as well. We shall say that a specification of VAE (ϕ1, θ1) and decision rule a1 for the row player,
and VAE (ϕ2, θ2) and decision rule a2 for the column player, represent an equilibrium of the game
between VAEs if the strategy (ϕ1, θ1, a1) is a best response to strategy (ϕ2, θ2, a2) by the other
player, and vice versa. Our double symmetry result states that if (ϕ1, θ1, a1) for the row player
and (ϕ2, θ2, a2) for the column player are such an equilibrium, there must also be three additional
equilibria: (ϕ2, θ2, a2) for the row player and (ϕ1, θ1, a1) for the column player; (ϕ∗

1, θ
∗
1, a

∗
1) for the

row player and (ϕ∗
2, θ

∗
2, a

∗
2) for the column player; and (ϕ∗

2, θ
∗
2, a

∗
2) for the row player and (ϕ∗

1, θ
∗
1, a

∗
1)

for the column player.
We can then define a symmetric equilibrium of the game between VAEs as an equilibrium that

is invariant under both of the symmetry transformations: that is, an equilibrium in which (i) the
strategies of the two players are identical: ϕ1 = ϕ2, θ1 = θ2, and a1 = a2; and (ii) the common
strategy is invariant under the symmetry transformation: ϕ∗ = ϕ, θ∗ = θ, and a∗ = a. Given
the symmetry of the game between VAEs (under these additional assumptions), it is natural to
conjecture the existence of a symmetric equilibrium; a unique equilibrium would have to be of this
kind. In our numerical explorations reported below, we always find that a symmetric equilibrium
exists, and that it appears to be the only possible kind of equilibrium. Note that an advantage
of studying symmetric cases is that a smaller number of parameters are required to characterize
equilibrium behavior.

4.2 Parameterization of the Generative and Recognition Models

We begin by specifying the class of generative models that we consider. We suppose that the set J
of latent states has 2J elements (for some positive integer J), that we number as j = 1, . . . , J and
j = −1, . . . ,−J. The reason for this notation is to allow us to define a symmetry transformation
of the kind discussed above, by specifying that for each state j, we define j∗ = −j. We further
assume that each of the conditional distributions p̃θ(x |j) is Gaussian: x|j ∼ N(µj, σ

2
j ). In the

absence of any restrictions on the possible parameters of the Gaussian distributions, this class of
generative models has the symmetry property proposed in section 4.1. For any generative model θ
specified by parameters {qθ(j), µj, σj}, there is a corresponding model θ∗ specified by parameters
{qθ∗(j), µ∗

j , σ
∗
j}, where qθ∗(j) = qθ(−j), µ∗

j = −µ−j, and σ∗
j = σ−j for all j ∈ J .

16



We assume that the recognition model (encoding model) belongs to the parametric family

pϕ(j |x) =
exp(λjx− νj)∑
ℓ∈J exp(λℓx− νℓ)

(10)

for certain coefficients {λj, νj}. Only the differences between the values of λj for different latent
states matter for the probabilities defined by (10), and similarly only the differences between the
values of νj for different latent states matter; hence we can without loss of generality normalize
the coefficients so that

∑
j∈J λj = 0 and

∑
j∈J νj = 0.

This family of encoding rules implies that the log of the relative odds of choosing any two
latent states j, j′ is a linear function of x, with the log odds when x = 0 specified by the difference
νj′ − νj , and the rate at which the log odds change as x increases specified by the difference
λj − λj′ . Thus the parameters all have relatively simple interpretations in the specification given
in (10). In addition, in the absence of any further parameter restrictions, this class of recognition
models has the symmetry property proposed in section 4.1. For any recognition model ϕ specified
by parameters {λj, νj}, there is a corresponding model ϕ∗ specified by parameters {λ∗j , ν∗j }, where
λ∗j = −λ−j and ν∗j = ν−j for all j ∈ J .

Equation (10) implies that for any finite values of the parameters, pϕ(j |x) ∈ (0, 1) for each j
and all x, and that pϕ(j |x) will be a continuous function of x for each j. Thus it might seem that
our model requires by assumption that a player’s choices must be stochastic for all x, and that there
will be no discontinuous jumps in the choice probabilities when plotted as functions of x— so that
this feature of our model’s predictions should be regarded as an assumption rather than a result.
But in fact, the specification (10) allows for encoding rules that are arbitrarily close to deterministic
encoding rules that jump discontinuously at certain critical values of x. In particular, it allows for
encoding rules that are arbitrarily close to deterministic rules that would allow a decision rule based
on the latent state to implement the choices associated with the single-jump symmetric equilibrium
with perfectly precise action selection (discussed in section 3.2 above).14

That equilibrium requires that both players stay with probability 1 whenever x < 0, and that
they both leave with probability 1 whenever x > 0. One can approach this pattern of play arbitrar-
ily closely by assuming a recognition model in which there are two latent states (J = 1), letting
the model parameters be λ1 = λ > 0, λ−1 = −λ, and ν1 = ν−1 = 0; and assuming a decision
rule under which a(j) = stay for all negative j and a(j) = leave for all positive j. Then as
λ → ∞, the predicted pattern of play becomes arbitrarily close to the deterministic action selec-
tion required for perfect coordination. Since we do not impose any bounds on the {λj} in our

14Note that this equilibrium achieves the maximum possible sum of expected payoffs for the two players, and thus
can be regarded as representing the benchmark of perfect coordination between the two players, in addition to perfect
optimization on the part of each player individually.
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definition of equilibrium or our proposed learning rule, the fact that we do not obtain deterministic
(or nearly deterministic) action selection, varying discontinuously (or so abruptly as to be nearly
discontinuous), can be considered a consequence of the objective for which the parameters of the
recognition model are optimized, rather than an assumption that has been built into the class of
models that we consider.

In a symmetric equilibrium, both the generative and recognition models must take more special
forms. Invariance under the first of the symmetries discussed in section 4.1 requires that the VAE
parameters {qθ(j), µj, σj, λj, νj} and decision rule {a(j)} learned by each player are the same as
those learned by the other. But in addition, each player’s generative model, recognition model, and
decision rule must be invariant if one reverses the sign of x for all external states, interchanges the
labels of the two actions (both for the player and for their opponent), and interchanges the labels
of latent states j and −j (for each j = 1, . . . , J). This latter symmetry will hold if and only if
qθ(−j) = qθ(j), µ−j = −µj, σ−j = σj, λ−j = −λj , ν−j = νj , and a(−j) is the opposite action to
a(j), for all j.

4.3 Reduction to a Game Between Recognition Models

In the equilibrium definition above, we require each player’s choice of parameter vectors (ϕ, θ, a)
to be a best response to the other player’s corresponding vectors. It is fairly easy, however, to
reduce the game to one in which each player’s “strategy” is simply the choice of a parameter
vector ϕ for their recognition (or encoding) model together with a decision rule a. This is because
a player’s choice of ϕ directly determines their optimal choice of θ as well.

Given the prior π from which the state x is drawn, and the specification ϕ of a player’s own
recognition model, the joint distribution pϕ(j, x) is completely determined. The player’s optimal
generative model θ is then the one that minimizes DKL(pϕ||p̃θ), just as in the basic VAE model of
Kingma and Welling (2014), since the additional term L defined by (8) is independent of θ.15 This
means (as discussed in section 2.2) that the optimal θ will be the one that maximizes the likelihood
of data drawn from the distribution pϕ. The optimal choice of qθ will again be given by qϕ (defined
in (2)), and for each latent state j, the optimal parameters (µj, σj) will be given by the mean and
standard deviation (respectively) of the conditional distribution pϕ(x |j).

It is then possible to define an equilibrium as a situation in which the parameter vectors (ϕ, a)
chosen by one player are a best response to the parameter vectors (ϕ′, a′) chosen by the other
player, and vice versa. We can further simplify the characterization of equilibrium if we restrict

15Here we assume our baseline model in which the VAE training objective is (4). In the case of the generalized
objective (7), the term R defined in (5) also depends on the probabilities qθ, an aspect of the generative model.
However, as already discussed in section 2.2, even when β1 ̸= 1, it remains the case that the optimal choice of qθ is
given by (2). And given this choice, the term R reduces to I , which depends only on pϕ. Thus the optimal generative
model θ continues to be the one that minimizes DKL(pϕ||p̃θ).
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ourselves to the case of a game between recognition models that each involve only two latent states,
as we do in the numerical results reported here.

4.4 The Case of Only Two Latent States

In our numerical illustrations of the coordination game between VAEs, we further specialize to the
case in which J = 1, so that there are only two latent states (j = −1,+1) for each player. This is
the minimum number of latent states required for the latent state to matter for observed behavior.
On the other hand, two latent states suffice for the class of behavioral models that we consider to
include arbitrarily close approximations to the behavioral rules required for perfect coordination.
Thus our restriction to VAEs with only two latent states does not in itself imply that coordination
must be imperfect. Indeed, in the equilibria that we display below, for all large enough values of
β, equilibrium behavior involves perfect coordination.16 For the sake of computational tractability,
we here consider only the case with J = 1, leaving for further analysis elsewhere the consequences
of allowing for a larger number of latent states.17

The restriction to the case of only two latent states simplifies the set of possible choices for
the decision rules (a, a′) that we must consider in order to fully characterize the set of possible
equilibria. There are four logically possible decision rules for either player: (i) stay if j = −1 and
leave if j = 1; (ii) leave if j = −1 and stay if j = +1; (iii) leave in either latent state; and (iv)
stay in either latent state. The set of possible behavioral rules associated with decision rule (ii) is
the same as in the case of decision rule (i): one simply changes the role of the two latent states in
the recognition model and generative model in order to represent a given behavioral rule using one
of these decision rules or the other. Hence we can without loss of generality exclude rule (ii) from
consideration.

But all of the behavioral patterns associated with decision rules (iii) or (iv) can also be obtained
as limiting cases of behavioral patterns that can be obtained using decision rule (i). (If one wants
to model behavior under which the player always leaves, one can simply choose an encoding rule
under which the latent state is j = 1 with probability 1, regardless of the value of x, and still
use decision rule (i); and similarly if one wants to model behavior under which the player always
stays.) Thus there is no advantage to a player of using a decision rule other than (i), as far as the
minimum achievable value of L is concerned, regardless of the other player’s VAE and decision

16See Figures 6 and 8 below.
17Such an analysis should reasonably take account of computational costs of allowing for more complex families

of generative and recognition models. If one does, it may well sometimes be the case that it is optimal to have no
more latent states than the number of available actions, even when the costs of additional latent states are modest. For
example, the rational inattention analysis of Yang (2015) imposes no a priori restriction on the number of possible
latent states, but finds that the optimal information structure for each player involves only two latent states, for any
positive value of the information-cost parameter.

19



rule. But there is also no advantage of using decision rules (iii) or (iv) from the standpoint of
reducing the value of DKL(pϕ||p̃θ). When one chooses an encoding rule under which one of the
latent states j is used with probability 1, regardless of the value of x, then the optimal generative
model θ will assign probability qθ(j) = 1 to that latent state, and (if the prior π is Gaussian, as we
assume here) will assign it a conditional distribution p̃θ(x |j) equal to the prior π(x). In this case,
we will have DKL(pϕ||p̃θ) = 0, which is the lowest value that could be obtained using any other
VAE.18 Hence we can without loss of generality assume that the decision rule is rule (i) for each
player.

An equilibrium of the game between two-state VAEs is then a pair of recognition models (ϕ, ϕ′)

such that ϕ is the optimal recognition model for a player facing an opponent who uses recognition
model ϕ′, and vice versa. Here the expected payoffs for the two players associated with a pair of
recognition models (ϕ, ϕ′) are defined by assuming (i) that each player’s generative model is the
one that is optimal for their recognition model, and (ii) that each player’s decision rule specifies
that they stay if their latent state is -1 and leave if their latent state is +1. Under these assumptions,
we can define a function V (ϕ; ϕ′) as the value of the training objective (4) for the player with
recognition model ϕ when the opponent uses recognition model ϕ′. Because of the symmetry of
the game, the value of the other player’s training objective will be V (ϕ′; ϕ). An equilibrium is then
a pair (ϕ̄, ϕ̄′) such that

ϕ̄ ∈ argminϕV (ϕ; ϕ̄′), ϕ̄′ ∈ argminϕ′V (ϕ′; ϕ̄). (11)

5 Equilibrium Behavior: Numerical Results

We proceed now to numerical analysis of the equilibria of the coordination game between two-
state VAEs defined in the previous section. Note that in the case of our baseline training objective
(4), the game is completely specified by assigning numerical values to two parameters: the value
of ω (indicating the amount of prior uncertainty, in terms of our normalized units), and the value
of β (indicating the relative weight placed on accurate action selection as opposed to congruence
between the generative and recognition models). This makes it relatively straightforward to explore
the complete parameter space numerically.

5.1 The Best-Response Mapping

We begin by considering the optimal recognition model ϕ for a player, for a given specification of
the recognition model ϕ′ of their opponent. In the case J = 1, we can parameterize each player’s

18Note that this argument does not require that the prior be symmetric, only that it be Gaussian. Thus it continues
to be valid in the case of asymmetric Gaussian priors of the kind considered in section 7.2 below.
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Figure 3: A player’s training objective, plotted (on the vertical axis) as a function of their recogni-
tion model parameters ϕ (the two dimensions of the horizontal plane), for each of several different
specifications (the four different panels) of the opponent’s recognition model ϕ′ = (λ′, ν ′). In all
cases, β = 0.2 and ω = ωlow.
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recognition model using only two numbers (λ, ν), corresponding to a recognition model of the
form (10) with λ−1 = −λ, ν−1 = −ν, λ1 = λ, ν1 = ν. Thus we wish to determine the optimal
parameters ϕ ≡ (λ, ν) for a player given arbitrary choices ϕ′ ≡ (λ′, ν ′) by their opponent.

The best-response mappings defined in (11) depend on the shape of the function V (ϕ; ϕ′).

In Figure 3, we illustrate what the function V (λ, ν; λ′, ν ′) looks like, plotted in each panel as
a function of the parameters (λ, ν), for given values of the parameters ϕ′ = (λ′, ν ′), that are
different in each panel of the figure. The top row of the figure shows two cases in which the
opponent’s recognition model is symmetric, meaning that ν ′ = 0.19 We observe in this case that
regardless of the value of the opponent’s λ′, the function V is a symmetric function of the player’s
own recognition model parameters, in the sense that

V (λ, ν; λ′, 0) = V (λ,−ν; λ′, 0).

This symmetry implies that if the function has a unique minimum, it will necessarily be associated
with ν = 0. Our numerical results indicate that this seem always to be the case (as illustrated by
the two cases shown in the figure). Comparison of the upper right panel with the upper left panel
shows that increasing λ′ (the right panel) causes V to increase less sharply for large positive values
of λ: a given degree of sensitivity of action selection to the value of x is more valuable when the
opponent’s action is also more sensitive to the value of x (in the same direction).

The bottom row of the figure instead provides examples in which the opponent has an asym-
metric recognition model: cases with ν ′ > 0, implying a bias toward use of the latent state j = −1

(and hence toward staying) when x is near zero. Such a bias on the part of the opponent increases
one’s own incentive to stay, and hence (given the assumed decision rule) the incentive toward
choosing the latent state j = −1 in the case of any external state x. The function V therefore
achieves its lowest value in these cases at a point where ν > 0, implying a bias toward the latent
state -1 and hence toward staying.

An important technical issue is whether the minimization problems in (11) have unique solu-
tions, so that the best-response mapping is single-valued (a function rather than a correspondence).
The function V (λ, ν; λ′, ν ′) is not a convex function of the parameters (λ, ν); indeed, it is easily
seen that the function has a finite upper bound, no matter how extreme the parameters of the recog-
nition model may be. Nonetheless, numerical exploration suggests that the function has a unique

19When ν = 0 for a player, their recognition model is symmetric, in the sense that pϕ(+1 |x) = pϕ(−1 | − x) for
all x, and the joint distribution pϕ is symmetric, in the sense that pϕ(j, x) = pϕ(−j,−x) for all (j, x). This in turn
implies that their optimal generative model will also be symmetric, in the sense that p̃θ(j, x) = p̃θ(−j,−x) for all
(j, x).
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(and interior) minimum. This allows us to define a function

Φ(λ′) ≡ argminϕV (ϕ; ϕ′), (12)

so that ϕ = Φ(ϕ′) is a player’s optimal recognition model when their opponent’s recognition model
is parameterized by ϕ′.

We can then define an equilibrium of the game between recognition models as a fixed point of
the iterated function Φ2. If there exists a recognition model ϕ̄ such that Φ2(ϕ̄) = ϕ̄, then the pair
ϕ = ϕ̄, ϕ′ = Φ(ϕ̄), constitute an equilibrium, since we have both

ϕ′ = Φ(ϕ̄) = Φ(ϕ), ϕ = Φ2(ϕ̄) = Φ(ϕ′),

and so both conditions of (11) are satisfied. (The converse is easily seen to be true as well.)

5.2 Symmetry of Equilibrium

It is logically possible for a fixed point ϕ̄ of the iterated mapping Φ2 not to be a fixed point of
Φ itself, i.e., for one to have Φ(ϕ̄) ̸= ϕ̄. In such a case, the equilibrium would be asymmetric (it
would involve different VAEs, and hence different action frequencies, for the two players). If so,
equilibrium cannot be unique. First of all, if (ϕ, ϕ′) is an equilibrium, then (ϕ′, ϕ) must also be an
equilibrium, and if ϕ′ ̸= ϕ, these are two different equilibria.

But as discussed in section 4.1 above, the game between VAEs has another symmetry as well.
This implies that if

(λ, ν) = Φ(λ′, ν ′),

it must equally be true that20

(λ,−ν) = Φ(λ′,−ν ′).

This symmetry implies that if the mapping Φ has a unique fixed point, it must be of the symmetric
form ϕ̄ = (λ̄, 0). A fixed point of this kind defines a symmetric equilibrium: one in which each
player has the same recognition model (and hence the same generative model as well), and it is of
the symmetric form (i.e., involves zero bias). We thus conclude that if there is any equilibrium in
which both players’ VAEs are the same, it must involve recognition models with ν = 0.

The symmetry just discussed also implies that if (λ, ν) is a fixed point of the iterated mapping
Φ2, the parameter vector (λ,−ν) must be a fixed point as well. This means that if there exists an
asymmetric equilibrium (ϕ, ϕ′), with ϕ′ ̸= ϕ and ν, ν ′ non-zero (the two players’ recognition mod-

20This is the symmetry that implies that if the best response to a symmetric model (λ′, 0) is uniquely defined, it
must also be symmetric (i.e., involve ν = 0), as discussed above.
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Figure 4: The vector field Ψ, plotted as a function of recognition-model parameters λ and ν.
Equilibria correspond to zeroes of the vector field. In both panels, ω = ωlow.

24



els are different, and each of them is biased), then there must exist at least four distinct equilibria,
corresponding to recognition models

(λ, ν), (λ,−ν), (λ′, ν ′), (λ′,−ν ′)

for the first player. It follows that in order for equilibrium to be unique, these four parameter
vectors must coincide. This means that the unique equilibrium must be a symmetric equilibrium.

We examine numerically whether any non-symmetric equilibria exist, by plotting in the (λ, ν)

plane the direction at each point of the vector field

Ψ(ϕ) ≡ Φ2(ϕ) − ϕ.

Equilibria then correspond to zeroes of the vector field Ψ. Figure 4 displays two examples of what
this vector field looks like, for two different values of β (but a common parameter value ω = ωlow).
For each of the parameter configurations that we have examined, the vector field has a unique zero,
which is located on the horizontal line ν = 0 (as must be the case, given the symmetry of the vector
field). There is thus a unique equilibrium, and it is a symmetric equilibrium, ϕ̄ = (λ̄, 0), though
the equilibrium parameter value λ̄ depends on the size of β.21

Because of the symmetry discussed above, the restriction of the mapping Φ(·) to the line ν = 0

can be described by a scalar-valued function Φ̄, such that λ = Φ̄(λ′) if and only if (λ, 0) is the best
response to (λ′, 0). Then the symmetric equilibrium value of λ is given by the fixed point of this
mapping, i.e., the quantity λ̄ such that Φ̄(λ̄) = λ̄. Thus the problem of computing the symmetric
equilibrium corresponding to any parameters (β, ω) can be reduced to one of finding the zero of a
nonlinear function of one variable.

5.3 The Symmetric Equilibrium under Alternative Values of β

We now discuss how the quantitative properties of this equilibrium depend on the relative weight
β used in the VAE training objective. We begin by considering how the value of β affects the
best-response mapping Φ. Figure 5 plots the parameters (λ, ν) that represent a best response to
a recognition model of the form (λ′, 0) on the part of the opponent. (We need only consider
recognition models ϕ′ of this symmetric form, because we have shown in the previous subsection
that the only equilibrium corresponds to a fixed point of this kind.) The graphs of both functions

21Note that the conclusion that the unique equilibrium is symmetric depends on our assumption here of a symmetric
prior. In section 7.2, we consider cases in which the prior is (at least initially) asymmetric (though still Gaussian). In
these cases, the equilibrium of the game between VAEs still corresponds to the zero of the vector field Ψ, and the
equilibrium is still a fixed point of Φ (so that both players use the same VAE in equilibrium), but the players’ common
recognition model involves ν ̸= 0.
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Figure 5: Best-response values of the parameters (λ, ν) to a symmetric recognition model (λ′, 0)
on the part of the opponent, in the case of several different possible values of β. In each case,
ω = ωlow.

are shown for each of several alternative possible values of β, for a given prior (the symmetric
prior with ω = ωlow).22

For any value of β, the symmetric equilibrium corresponds to the value of λ′ at which the
graph of Φ̄(λ′), shown in the left panel of the figure, crosses the diagonal. As could also be seen
from Figure 4, there is a unique such fixed point for each value of β. Figure 5, however, provides
additional information about the function that determines the location of this fixed point. It can be
seen from the behavior of the vector field Ψ along the horizontal line ν = 0 in Figure 4 that Φ̄2(λ′)

is larger than λ′ for all λ′ less than the equilibrium value λ̄, and smaller than λ′ for all λ′ > λ̄.

Figure 5 shows something stronger: that Φ̄(λ′) is an increasing function, with λ′ < Φ̄(λ′) < λ̄ for
any λ′ less than the equilibrium value,23 and each of these inequalities reversed for any λ′ greater
than λ̄. This implies not only that there must be a unique fixed point λ̄ > 0, but that it can be
computed by simply iterating the map Φ̄ to convergence from an arbitrary initial guess.

Figure 5 also shows that for any λ′ chosen by the opponent, the value of Φ̄(λ′) is greater the
larger the value of β. This then implies that the fixed point λ̄ will be increasing as a function of
β, as had already been shown for two particular values of β in the two panels of Figure 4. The

22The effect on the graph of instead varying the value of ω for a given value of β is discussed in section 6.2 below.
23The graph only shows the function for values λ′ ≥ 0 (the region of greatest interest, since the equilibrium value

is always positive), but one can show that the claim also holds for negative values of λ′.
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Figure 6: Solutions for the equilibrium values of the parameters λ, µ and σ of both players’ sym-
metric VAEs, as functions of the value of β. Top row: solutions for small positive β. Bottom row:
solutions for a larger range of values of β. In all cases, ω = ωlow.
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equilibrium value of λ is plotted as a function of β (again, fixing the value ω = ωlow) in the panels
in the left column of Figure 6.

The solution for λ is plotted for relatively small positive values of β in the top row; this figure
shows how the equilibrium value of λ grows very sharply with even a small increase in β for values
of β near zero, but grows more slowly for larger values of β. The solution is instead plotted for
even larger values of β in the bottom row; this figure shows that for large enough values of β, the
equilibrium value of λ again increases sharply with even a small further increase in β. Indeed, the
optimal value of λ becomes unboundedly large (implying perfect coordination) for all values of β
greater than a finite critical value β̄ (about 1.645).

Given the solution for the optimal λ for any value of β (and thus for the optimal symmetric
recognition model), one can then solve for the associated optimal generative model. Because the
optimal generative model in the case of a symmetric recognition model is also symmetric, it must
involve qθ(j) = 1/2 for both latent states, regardless of the value of β. Symmetry also implies that
the other parameters of the optimal generative model must be of the form µ−1 = −µ, σ−1 = σ,

µ1 = µ, σ1 = σ, for some coefficients µ, σ. The optimal values of µ and σ are also plotted as
functions of β in Figure 6.

We see that the optimal value of µ is non-negative (and positive for all β > 0), corresponding
to the fact that the optimal λ is non-negative (and also positive for all β > 0). Moreover, the
optimal value of µ is an increasing function of β (just as λ is), up until the critical value β̄ is
reached, beyond which the optimal µ asymptotes to the finite value

√
2/πω. The optimal value

of σ is always positive; it is equal to ω when β = 0, but falls monotonically as β (and hence λ)
increases, asymptoting to the positive lower bound

√
1− (2/π) for all values of β larger than β̄.

The ways in which the equilibrium generative and recognition models vary with β are illustrated
visually in Figure 12 in the Appendix.

5.4 Trade-offs Between Alternative Training Objectives

We have seen that regardless of the relative weight placed on the two terms in the hybrid objective
(4), the unique equilibrium will be a symmetric equilibrium; and the quantitative properties of
this equilibrium are completely determined once we know the value of the parameter λ of the
symmetric encoding rule used by both players. Thus regardless of the training objective, there
is only a one-parameter family of possible equilibrium behavioral patterns, indexed by λ. Since
the equilibrium value of λ is furthermore found always to non-negative, the set of achievable
behavioral patterns corresponds to the ones associated with parameter values λ ≥ 0. (Note that
all of those patterns can be achieved through a suitable choice of the training objective, since the
equilibrium value of λ increases continuously from 0 to +∞ as β is increased from 0 to β̄, as
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Figure 7: The values of three alternative training objectives in the stationary equilibria associated
with different common values of λ for the two players. Each graph is shown for the case ω = ωlow.

shown in the lower left panel of Figure 6.)
The available trade-off between the two objectives — greater congruence between the genera-

tive model and the recognition model (i.e., lower DKL) on the one hand, or more accurate action
selection (i.e., lower L) on the other — can thus be studied by computing the achieved values of
these alternative objectives for each of the possible values of λ ≥ 0. The results of these calcula-
tions are plotted in the second and third panels of Figure 7. We see that increasing λ increases the
value of DKL (from a minimum value of zero, when λ = 0, to a finite positive asymptotic value
as λ→ ∞) and reduces the value of L (which begins at its largest positive value when λ = 0, and
approaches zero asymptotically as λ → ∞). There is thus a trade-off between the two objectives,
with lower L requiring a larger value of DKL, and vice versa; any point on the trade-off can be
achieved by choosing a suitable value of β between the extremes of β = 0 (which minimizes DKL

and maximizes L) and β = β̄ (leading to the minimal value of L but a maximal value for DKL).
The β-VAE proposal of Alemi et al. (2018) instead minimizes a weighted average of D and R,

or alternatively, an objective with a positive weight on DKL and a negative weight on R. Figure
7 also shows how the value of R differs across symmetric equilibria associated with different
values of λ. Since DKL and R are both monotonically increasing functions of λ, we see that there
is a tension between the objectives of reducing DKL and of increasing R: one requires λ to be
kept as small as possible while the other requires it to be made as large as possible. By varying
the relative weight on the two objectives (alternative values of the “β” of Alemi et al. (2018)),
one can sweep out the entire one-parameter family of possible symmetric equilibria, from λ = 0

(when all of the weight is on reducing DKL) to λ unboundedly large (when all of the weight is on
maximizing R). But this is the same one-parameter family of equilibria as are already obtained in
our baseline model with training objective (4); we have no need to assume an intrinsic interest in
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more informative latent states, as proposed by Alemi et al. (2018), once we penalize models that
result in higher values of L.

The rational inattention model of Sims (2003) instead assumes that information structures min-
imize a weighted sum of L and the Shannon mutual information, or equivalently (since I = R for
all of the symmetric equilibria considered here), a weighted sum of L and R. Figure 7 shows that
there is also a tension between these two objectives: reducing L requires making λ larger, while
reducing R requires that it be made larger. Depending on the relative weight on the two terms, the
symmetric equilibrium obtained will involve a larger or smaller value of λ; but again the theory
would lead us to the same one-parameter family of possibilities.24

Finally, we have mentioned above a more general possible training objective (7), with weights
on DKL, R, and L all three. But in the current application, different values of the weights β1, β2 in
the generalized objective can still only lead to the same one-parameter family of possible symmet-
ric equilibria. Increasing the weight on reduction of L (through a higher value of β2) and increasing
the weight on R maximization (or reducing the weight on reduction of R , by making β1 lower)
are simply two different ways of inducing a larger equilibrium value of λ, with the same effects
on the equilibrium pattern of behavior in either case. For this reason, we omit figures showing the
quantitative effects of varying the parameter β1 in (7).

6 Consequences for Observable Behavior

We turn now to the predictions of our VAE model for observed play in a coordination game of the
kind described in section 3, at least to the extent that we think that subjects’ cognitive processing
should have sufficient opportunity to adapt to the statistics of play in a specific experimental situa-
tion. (The implications of incomplete learning are deferred until section 7.) We discuss two aspects
in particular of experimentally observed behavior, as illustrated in Figure 2. First, we consider the
reason for subjects’ decisions to be stochastic, conditional on the current state x, and for the prob-
ability of selecting a particular action to vary only gradually as x changes, rather than switching
discontinuously. And second, we consider the predicted effects on the conditional probability of
action selection of a change in the prior distribution from which x is drawn on separate trials.

24The one-parameter family of solutions is only the same as in the case of our baseline model if we assume that
the optimization is over the parametric families of generative and recognition models defined in section 4.2. RI theory
as formulated by Sims includes no such restrictions; the theory discussed here can be viewed instead as a sort of
variational approximation to RI theory.
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6.1 Imprecise Action Selection

A notable feature of the observed behavior in Figure 2 is that subjects randomize between the two
possible actions in the case of all of the values of x between -1 and 1, rather than always staying in
the case of low values of x and always leaving when x is higher. Our model implies that behavior
of this kind can be a stable outcome of learning by a VAE.25 As shown above, the equilibrium
recognition model is stochastic (i.e., λ is finite) for all values of β below the critical level β̄; the
implied probabilities of classifying a given external state with one or the other latent state are
shown for several values of β in Figure 12 in the Appendix. Given the equilibrium decision rule,
this immediately translates into a prediction of random choice conditional on the value of x, as
illustrated in Figure 9 below.

It might be thought that we have “hard-wired” our model to yield this conclusion, but this is
not the case: as noted above, it is possible for a VAE to yield discrete switching between staying
with certainty and leaving with certainty. Indeed, this would represent equilibrium behavior, for
some parameter values. Figure 13 in the Appendix shows, as an example, that if β = 2, the optimal
recognition model involves making λ an unboundedly large positive quantity, for either of the two
values of ω used in the experiment of Frydman and Nunnari (2023). Thus the VAE learns to classify
the state as j = −1 with certainty whenever x < 0 and as j = 1 with certainty whenever x > 0.

Since the learned decision rule a(j) is also deterministic, this leads to deterministic behavior, and
indeed to perfect coordination on mutually advantageous state-contingent behavior. (The same
results are obtained for all large enough values of β, as shown for the case ω = ωlow in Figure 6.)

But this is not the kind of behavior that should be learned in the case of a training objective
that places a greater relative weight on congruence between the generative model and the statistics
of the training sample produced by classification of external states using the recognition model
(corresponding to a lower value of β). This is because a very large value of λ (implying more
nearly deterministic action selection) implies a larger value of DKL(pϕ||p̃θ), as shown in Figure 7,
implying less congruence. A sufficiently greater relative weight on congruence therefore requires
that λ remain of modest size; indeed, if the weight on the other objective is sufficiently small
(β → 0), the equilibrium value of λ can be made arbitrarily close to zero, implying minimal
sensitivity of action selection to the circumstances on a particular trial.

The fact that we obtain this result even when we place no additional penalty on the degree of
informativeness of the latent state (i.e., when we do not assume β1 > 1, as in rational inattention
models) depends critically on the fact that we limit the class of VAEs that we consider to a restricted

25A variety of other approaches have also been proposed that allow for stochastic behavior and consequent imper-
fect coordination in a game like the one that we discuss; these include quantal response equilibrium (Goeree et al.
(2016), Friedman (2020)), rational inattention (Yang (2015)), Thompson sampling (Mauersberger (2022)), and evo-
lutionary models (Arifovic et al. (2013)), in addition to the kind of efficient coding model that Frydman and Nunnari
(2023) propose as an explanation of their data. We compare our model with these alternatives in Appendix section A.
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parametric family — more specifically, on the fact that the class of possible generative models is
restricted. Even granting the restriction to only two latent states, and requiring the recognition
model to be a symmetric member of the family (10), if it were possible to choose the conditional
distributions p̃θ(x |j) with sufficient flexibility, it would always be possible to choose a generative
model such that DKL(pϕ||p̃θ) = 0, regardless of the value of λ chosen for the recognition model.
It would then be possible to choose λ simply with a view to increasing the accuracy of action
selection, making it optimal to choose an unboundedly large value of λ in the case of any relative
weight β > 0.

The result is different from this in our model (when 0 < β < β̄) because of our restriction
on the class of possible generative models that can be considered by the VAE. The result that
stochasticity can chosen in equilibrium does not, however, depend on such special assumptions as
requiring the distributions p̃θ(x |j) to be Gaussian, or assuming that there can be no more than two
latent states; it simply requires that some conditional distributions can be better approximated by
a member of the admissible family than others, and that the prior distribution π(x) be a “simple”
distribution that can be particularly well approximated in this way.

Given the restricted parametric family of recognition models considered here, our model pre-
dicts that in equilibrium, Prob[leave |x] should be a logistic function of x. More general shapes are
possible, however, if we allow for other kinds of recognition models.26 Moreover, the data shown
in Figure 2 aggregate the choices of many different subjects; our model predicts a logistic curve
of the kind illustrated in Figure 9 only if we assume that the weight β is the same for all of the
subjects. In fact, as Frydman and Nunnari (2023) report, the curves fit to individual subjects’ data
are somewhat heterogeneous. If we assume a population of subjects that includes both higher and
lower values of β, our model predicts that one should observe both relatively steep variation in
aggregate choice frequencies for values of x around zero, and at the same time choice frequencies
that remain relatively far from either zero or one even for relatively extreme values of x.

6.2 Effects of the Degree of Prior Uncertainty

Another notable feature of the behavior shown in Figure 2 is that the probability of staying, condi-
tional on the value of x, varies depending on the variance of the distribution from which x is drawn
in that experimental treatment. Our model predicts this as well, owing to the endogeneity of the
equilibrium recognition rule (encoding rule), depending on the statistics of the observed values x
in the environment to which the players’ VAEs are adapted.

The intuition for this can be simply explained. Minimization of the discrepancy measure
DKL(pϕ||p̃θ) requires (among other things) that the marginal distribution p̃θ(x) implied by the

26Note that it is the restrictiveness of the class of generative models, rather than the special class of recognition
models, that is important for the prediction of equilibrium stochasticity under the argument just given.
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Figure 8: The equilibrium value of λ as a function of β, now shown for two different values of ω.
(The left panel provides greater detail for small values of β.)

generative model not be too different from the prior distribution π(x). When the prior distribution
is made wider (passing from the “low volatility” to the “high volatility” condition), the degree to
which DKL increases is reduced by making the conditional distributions p̃θ(x |j) correspondingly
wider, and the means of the two distributions corresponding to the two latent states farther apart.27

But such a change in the generative model also implies a change in the recognition model that will
minimize the discrepancy between the joint distributions pϕ and p̃θ.

Figure 9: Predicted equilibrium choice frequencies under the two treatments of Frydman and Nun-
nari (2023). Results are shown for a training objective with β = 0.2.

If the VAE training objective were to make λ as large as possible (in order to minimize L), sub-
27For numerical illustrations, see Figure 12 in Appendix section B.
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ject to an upper-bound constraint on the acceptable value ofDKL, the solution would be to increase
both µ and σ in exact proportion to the increase in ω, while reducing λ in inverse proportion to the
increase in ω. (These offsetting changes would result in no change in the value of DKL, despite the
change in the prior.) When the objective is instead to minimize (4) for some relative weight β > 0

that is not too large, this is not exactly the optimal adjustment, but (for any fixed recognition model
ϕ′ of the opponent) it continues to be optimal to reduce λ in response to an increase in ω. This
means that the curve shown in the left panel of Figure 5 for a given value of β will shift downward
for each value of λ′, resulting in a lower value of λ∗, the value of λ′ for which the curve λ = Φ(λ′)

crosses the diagonal.
The consequences for the equilibrium value of λ for each possible value of β are shown in

Figure 8. The left panel of the figure shows how the curve shown in the top left panel of Figure
6 shifts if one increases the value of ω from ωlow to ωhigh; the right panel correspondingly shows
how the curve shown in the bottom left panel of Figure 6 shifts. We observe that λ is lower for
each value of β. Thus if we assume that the VAE used in each experimental condition is one
that is optimally adapted to that condition, but that the same training objective is used in both
conditions, the players’ choices should be less sensitive to the value of x on each trial under the
“high volatility” condition. This is illustrated in Figure 9, for the case of VAE training objective (4)
with weight β = 0.2. Comparison of this figure with Figure 2 shows that our model can account
(at least qualitatively) for the central finding of Frydman and Nunnari (2023).

6.3 Greater Precision in Play Against an Automaton

Frydman and Nunnari (2023) also compare the experimental treatment in which two human sub-
jects play one another (discussed above) to an alternative treatment in which a single human subject
plays against a computer that chooses deterministically, according to a rule that the human subject
is told: the computer will leave if and only if x ≥ 0. Given this knowledge, the optimal strategy
for the human player when playing against the computer is to also leave if and only if x ≥ 0;
and it is also an equilibrium for two perfectly-rational human players to follow this decision rule.
Thus under an assumption of perfectly precise play by human players, there need be no difference
between the play observed when two humans play each other and when a human plays against the
computer. Instead Frydman and Nunnari (2023) find random action selection conditional on x in
both cases, but considerably more random behavior when two humans play each other.

Our model also predicts this difference between the two treatments (at least qualitatively).
Suppose that 0 < β < β̄ for the VAE players. As discussed above, when two VAEs play each
other, in equilibrium each should learn a recognition model with parameter λ = λ̄, the fixed point
of the mapping Φ̄ graphed in the left panel of Figure 5. If instead a VAE plays against a computer
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that implements the deterministic choice rule, then the VAE should learn the recognition model that
is the best response to an opponent with a recognition model with λ′ → +∞, ν ′ = 0. As shown
above, this is a symmetric recognition model (λ̂, 0), where λ̂ is the limit of Φ̄(λ′) as λ′ → +∞.

Thus in both cases, a VAE player should learn a symmetric recognition model, but the value of
λ should be larger in the case of the VAE that plays against a computer, since it follows from the
monotonicity of Φ̄(λ′) that

λ̄ = Φ̄(λ̄) < lim
λ′→+∞

Φ̄(λ′) = λ̂.

(See Appendix section B.2 for numerical illustration of the difference.) Since the value of λ directly
determines the steepness of the logistic curve Prob[leave |x] for a VAE player, our model predicts
more random behavior when two players with endogenously imprecise behavior play against one
another, than when one of them plays a deterministic automaton. Note that in our theory, what is
important is not whether a player is human or a machine, nor whether a player attributes inten-
tionality to the other player, but simply whether both players endogenously adjust their decision
procedures to minimize a training objective of the form (4) with only a moderate weight β on
accuracy of action selection.

7 Learning from a Finite Body of Experience

Thus far we have only sought to characterize play in an equilibrium after both players’ internal
models have come to be perfectly adapted to both the statistics of the external environment (the
prior π) and to the statistics of each others’ behavior. But an important strength of the VAE ap-
proach is that it also provides a model of the way in which decision algorithms can be trained on
the basis of a finite body of experience. An important advantage of adaptive learning models of
this kind is that — in addition to addressing questions about whether a state of equilibrium should
actually be reached, even in a stationary environment — they allow us to analyze the dynamics of
adaptation when the statistics of the environment shift.

The experimental results of Arifovic et al. (2013) indicate that in coordination games there
is inertia in the strategies played as the underlying environment shifts. In particular, they con-
duct an experiment in which the initial situation is one in which players tend always to choose
one action, followed by a change in the environment to a symmetric game (like the one analyzed
above) in which coordination on either action represents an equally plausible equilibrium. They
find that players continue to be more likely to choose one action over the other one even in the sym-
metric environment, with the direction of the bias determined by the direction of the asymmetry
in the original environment. Thus experimental behavior exhibits history-dependence: behavior
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continues to be biased by the incentives that players faced in a past environment, long after the
environment has changed. We show that our model (like the evolutionary model of Arifovic et al.
(2013)) predicts behavior of this kind; indeed, we regard this as one of its strengths. But to show
this, we must consider how the VAE parameters should be adjusted as additional experience ac-
crues, rather than simply describing the equilibrium that should eventually be reached after long
enough experience within a stationary environment.

7.1 A VAE Training Algorithm

We now introduce an explicit model of how the players’ VAEs can be trained on the basis of a
finite body of experience. This allows us both to study the history-dependence of behavior during
a transition from one environment to a new one, and the convergence of the learning dynamics to
an eventual equilibrium of the kind characterized above.

We posit an online algorithm for the iterative adjustment of the parameters of each of the
players’ VAEs as experience accrues. In each time period t, each player computes new estimates
(θt, ϕt) of the parameters that specify their generative and recognition models; these parameter
estimates are chosen to minimize the estimated value of the training objective (4), given the sample
of experience to that point. As explained above, the generative model θ that minimizes (4) is the
one that sets the parameters {qθ(j), µj, σ

2
j} equal to the corresponding first and second moments

of the joint distribution for (j, x) implied by the prior and the player’s recognition model. We
assume that in each period, the estimated parameters θt are given by the moments of the empirical
distribution to that point — that is, the moments of the sample {xτ , jτ} for τ = 1, 2, . . . , t.28

Our online algorithm for estimating the parameter vector ϕ is based on the observation that the
parameters that minimize (4), given a generative model θ and a joint distribution for the variables
(x, a′) implied by the prior and the behavior of the other player, must satisfy a vector of first-order
conditions of the form29

E[∆(x, a′) · ∇(x)] = 0, (13)

where the vector
∇(x) ≡ ∇ϕpϕ(1 |x)

is the gradient of the recognition rule evaluated at any state x (a function that depends on the
parameters ϕ), and E[·] denotes an expected value over the joint distribution for the variables
(x, a′). The function ∆(x, a′) depends on the parameters (θ, ϕ); it can be shown to be a function of

28Some of these sample moments will be undefined for low values of t; for example, the algorithm cannot estimate
µj until there has been at least one period in which the state is classified using latent state j. But the way that we
define the estimates in these early periods has no consequences for the predicted later evolution of the estimates.

29See Appendix section C for details.
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the form
∆(x, a′) ≡ v(x)Tϕ − m(x, a′)Tψ(θ). (14)

Here the vector-valued functions v(x) and m(x, a′) are defined independently of the VAE param-
eters; ϕ is the vector whose elements are the parameters (λ, ν) and ψ(θ) is a vector of nonlinear
functions of the parameters θ; and we use a superscript T to denote a transpose.

Hence the first-order conditions (13) can be written in the form

M ϕ = N ψ(θ), (15)

where the moment matrices

M ≡ E[∇vT], N ≡ E[∇mT] (16)

are expected values of functions of (x, a′) that are independent of the parameters θ, and depend on
ϕ only through its role in the calculation of ∇(x). We can thus express M and N as the expected
values of functions of the triple of random variables (x, a′,∇), where the expected value is over
the joint distribution for these three variables.

The learning algorithm goes through the following sequence of steps in each time period t:30

1. A new observation xt is drawn from the prior distribution associated with the current envi-
ronment. Each player’s algorithm computes a value for the gradient vector ∇t = ∇(xt),

using the parameters ϕt−1 of their existing recognition model.31

2. Each player’s VAE selects a latent state jt with which to represent the current state xt; the
stochastic encoding rule is determined by the player’s existing parameter estimates ϕt−1.

The two players’ stochastic encoding rules are conditionally independent. Each player then
selects the action at = a(jt) recommended by the decision rule specified in section 4.4.

3. New estimates Mt, Nt of the moment matrices defined in (16) are computed, taking into ac-
count the new observations (xt, a′t,∇t). The moments are computed on the assumption that
the complete sample of observations {xτ , a′τ ,∇τ} for τ = 1, . . . , t represents a succession
of independent draws from the same joint distribution, the moments of which are to be esti-
mated. This allows the new estimates Mt, Nt to be computed recursively on the basis of the
previous estimates Mt−1, Nt−1 and the new observations (xt, a′t,∇t).

30The explicit equations that define the algorithm are given in Appendix section C.
31In period t = 1, the algorithm starts with an arbitrary specification of the “existing” recognition model ϕ0 for

each player. In any later period, the parameters ϕt−1 are the ones determined by the algorithm in the previous period.
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4. Similarly, new estimates of the moments of the joint distribution of (j, x) are computed,
taking into account the new observations (jt, xt). Again the moments are computed on the
assumption that the complete sample of observations {jτ , xτ} through period t represents
a succession of independent draws from the same joint distribution, and again this allows
recursive updating of the estimated moments. The new estimated parameters θt for each
player’s generative model are set equal to these moment estimates.

5. The new estimates ϕt of the parameters of each player’s recognition model are the ones
implied to be optimal by the first-order conditions (15), given the player’s current estimates
of both the moment matrices and the generative model parameters. Thus the new estimates
are given by32

ϕt = M−1
t Ntψ(θt). (17)

The same sequence of steps is then repeated in period t+ 1 (now using the vector ϕt to determine
the “existing” recognition model), and so on.

Note that this algorithm has the property that, if the VAE parameter estimates (θt, ϕt) eventu-
ally converge, then the moment matrices M,N will converge as well, the resulting estimates will
satisfy the FOCs (15) for the optimality of ϕ, and the parameters θ will be optimal as well. In our
numerical experiments with the algorithm, it does converge, and to the VAE parameters associated
with the symmetric equilibrium characterized above.

7.2 Convergence to Equilibrium and History-Dependence

Here we present a simple example of the learning dynamics implied by the algorithm just pro-
posed. We compare two scenarios: in one, for the first 1000 periods, the state x is drawn from
the asymmetric prior distribution L, while in the other, for the first 1000 periods it is drawn from
asymmetric prior distribution H . In either case, from period t = 1001 onward, the state is instead
drawn from the symmetric distribution M . Each of the three priors is a Gaussian distribution with
standard deviation ωhigh = 5, but their means are different: the mean is 5 in environment H , 0 in
environment M , and -5 in environment L. We are interested in how the VAEs adjust to the change
in the environmental distribution at time t = 1001, and in the extent to which behavior in periods
t > 1000 continues to be influenced by which of the two environments was experienced in periods
t ≤ 1000.

We have characterized the symmetric equilibrium associated with a symmetric prior such asM
above; here we consider whether such an equilibrium is eventually reached if the two VAEs use our

32As explained in Appendix section C, the matrix Mt will be non-singular (and positive definite) with probability
1 in all periods t ≥ 2. An arbitrary rule can be used to select the vector ϕ1 in period 1, with little consequence for the
subsequent dynamics.
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Figure 10: Evolution of the estimated value of the bias parameter νt, under simulated transition
dynamics from two different initial conditions (H,L). Path shown is the average of the estimates
by the two players. The dashed line shows the predicted long-run (equilibrium) parameter value
for prior distribution M .

proposed training rules. The equations discussed above can also be used to define an equilibrium
in the case of an asymmetric prior such as L or H; in this case, the equilibrium is necessarily
asymmetric, but can again be computed as a zero of the mapping Ψ.

In the numerical simulations reported here, we start the algorithm in period t = 1001, assuming
existing VAE parameters θ1000, ϕ1000, and corresponding moment matrices M1000, N1000, equal to
the equilibrium predictions under the asymmetric prior (L or H as the case may be). We then
simulate the learning dynamics given these initial conditions, with new states {xt} drawn from
prior distribution M for all t ≥ 1001. Results are shown in the case of training objectives of the
form (4) with β = 0.2.

The evolution of the coefficient estimate ν̂t under each of the two scenarios is shown in Figure
10.33 In fact, there are two values of this parameter each period, under either of the scenarios:
an estimated value for each of the two VAEs. The two values are similar, in a given scenario,
because both VAEs have the same training objective and observe the same sequence of external
states; but they are slightly different because of the independent randomness in the way that the
two recognition models choose the latent states jt and j′t. The figure plots a single trajectory for
each scenario, corresponding to the average each period of the estimates by the two VAEs. Similar
figures could be displayed for the evolution of the estimated sensitivity parameter λ̂t, but the path

33The horizontal axis measures the number of time periods since the transition to distribution M . Thus “iteration
number” 1 corresponds to t = 1001, and so on.
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of the bias parameter ν̂t is especially interesting because of how different the estimated values
initially are under the two scenarios.

When the VAEs are initially exposed to draws from distribution L (so that x < 0 most of the
time), they start the simulation with a large positive estimate of ν (that is, a strong bias toward
staying), whereas when they are initially exposed to H (so that x > 0 most of the time), they start
with a large negative estimate (a strong bias toward leaving). Once the state begins to be drawn
instead from the symmetric distribution M , the size of the bias is reduced (regardless of its initial
sign). During the first 1000 or so periods in the new environment, convergence is fairly rapid, but
it becomes much slower as further experience is accumulated.

The equilibrium value of the parameter associated with the new environment M (i.e., ν = 0) is
shown as a horizontal dashed line in the figure. We present further evidence in Appendix section
C.3 indicating that as the simulations are run farther, the estimates appear to converge to precisely
those associated with the symmetric equilibrium. The same is true of other parameters, such as
the VAE estimates of λ. Thus the equilibrium predictions discussed above are also the predictions
of our model of learning dynamics, under the assumption that a long enough time is spent in a
stationary environment.

Figure 11: The probability of a player’s choosing to stay, as a function of the next value of x that
is drawn (the horizontal axis), given the parameters ϕt of their recognition model after a certain
amount of experience with environment M , under each of the two scenarios depicted in Figure 10.
The curves average the probabilities of staying for the two players (which are nearly identical). For
each scenario, the implications of the learned recognition model are shown after 2000 draws from
distribution M (the “early” curves), after 500,000 draws (the “late” curves), and in the long-run
equilibrium (dashed curve).

But while our model predicts that convergence to the equilibrium estimates (and hence to equi-
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librium behavior) should occur eventually, the convergence can be relatively slow. Hence we
should expect to see visible history-dependence in experiments like those of Arifovic et al. (2013),
where there is a change in the distribution from which the payoff matrix is drawn on individual
trials.

The predicted change in subjects’ propensity to stay over the course of our two scenarios is
shown in Figure 11. The solid curve labeled “H (early)” plots the behavioral function Prob[stay |x]
in period t = 3000, under the scenario where the states were initially drawn from distribution H;
the curve labeled “L (early)” plots the corresponding function for the scenario where the states
were initially drawn from L. One observes that these curves are quite different, despite the fact
that in both cases the VAEs have at this point observed 2000 successive draws from distribution
M . (In one case, the VAEs would choose to stay more than 70 percent of the time for values of
x near zero, while in the other they would leave more than 70 percent of the time under the same
circumstances.)

The dashed curve labeled “H (late)” plots the same behavioral function, again under the sce-
nario where the states were initially drawn from H , but now for period t = 501, 000. The dashed
curve labeled “L (late)” shows the corresponding curve when the environment was initially L.
These two curves remain visibly different, even after 500,000 periods of common experience,
though less far apart than the two solid curves. As t → ∞, both curves convergence to the dotted
curve, representing equilibrium behavior in the case of the distribution M . (This curve is the same
as the flatter curve in Figure 9.)

8 Conclusion

We offer a model of imprecise action selection in strategic environments, the implications of which
are illustrated in the context of a simple (but much-studied) class of coordination games. Our ap-
proach is based on the supposition that players choose their actions on the basis of an algorithm
with the structure of a VAE, the parameters of which have been trained on the basis of a finite
sample of prior experience, both with the environment and their opponent’s pattern of play. We
show that our model can explain the persistence of randomness in players’ action selection con-
ditional on the payoffs available on a given trial, even after extensive training, under two crucial
assumptions: (i) that individual decision situations are classified using one or another of a small set
of latent states, and that only this latent state is available as a basis for action choice, and (ii) that
there is a sufficient degree of concern to have an internal model (generative model), used to inter-
pret the latent state and choose an appropriate action, with the property of fairly high congruence
between the joint distribution of external states and latent states implied by the generative and the
joint distribution that is experienced.
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We show moreover that the random action selection predicted by our model captures important
features of experimentally observed behavior in experiments like those of Frydman and Nunnari
(2023). Notably, the probability of a player’s choosing to stay falls monotonically (but only grad-
ually, rather than discontinuously) with increases in the value x of the outside option that can be
obtained by choosing to leave. The sensitivity of choice probabilities to the value of x also varies
with the range of variation in x across trials (i.e., with the variance of the prior distribution from
which x is drawn on each trial): for a given value of x, choices are predicted to be (and observed to
be) more random when there is greater prior uncertainty aboutx. Finally, our model predicts that
choice probabilities in a given decision situation parameterized by x will depend on the history of
past values of x that have been encountered — not on the distribution from which x is drawn in
the current environment, but the distributions from which previously experienced values of x have
been drawn. Thus our model can explain the path-dependence of the behavior upon which subjects
coordinate in experiments like that of Arifovic et al. (2013).

Our conclusions depend importantly on the restricted classes of possible generative and recog-
nition models that are allowed by the VAE architecture. This raises an important question about
the particular classes of models that should be assumed in our approach. While the topic clearly
deserves further study, we have suggested that our restriction of attention to a particular parametric
family of encoding models (recognition models) in our numerical results may not be crucial for
our qualitative conclusions; our restriction to a particular parametric family of generative mod-
els (Gaussian mixture models with some finite number of components) seems instead to be more
critical.

We have argued that it is reasonable to suppose that people learn using algorithms that search
over only some finitely-parameterized space of possible generative models, on the ground that this
makes it possible to learn a rule of behavior that is appropriate to an environment using only a
sample of modest size of experience of that environment. But this still leaves open the question
of which finitely-parameterized class of generative models it makes sense to expect the learning
process to entertain. Consideration of possible grounds for selecting such a family, and investiga-
tion of the degree to which our conclusions are sensitive to the particular class that is used, will be
important topics for further research.
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APPENDIX

A Alternative Models of Imprecise Coordination

Here we compare our VAE model with a variety of other models of imprecise decision making
in strategic situations, some of which have also been applied to coordination games of the kind
treated in this paper.

A.1 Rational Inattention

The model of rational inattention proposed by Sims (2003) has been applied to a coordination
game of the kind discussed in section 3 by Yang (2015). Like our model, RI models predict that
choice should be stochastic, as a result of its being based on a noisy internal representation of the
situation (like the latent state in our model), rather than directly on the exact external state x; and
as in our model, the conditional probabilities of different internal representations are optimized for
the prior distribution associated with a given environment. Indeed, the kind of RI model analyzed
by Yang (2015) can be considered a special case of the generalized version of our model presented
in section 2.2.

A.1.1 RI as a Special Case of the VAE Framework

The Sims (2003) model of rational inattention can be viewed as a model of same general type as
the models discussed in section 2.2, and more specifically, as a special case of the generalized VAE
model with training objective (6). It assumes, however, that for any choice of the encoding model
ϕ, the generative model is given by

qθ = qϕ, p̃θ(x|j) = πϕ(x|j) ∀j. (18)

That is, the decoding of the latent states is assumed to reflect correct Bayesian inference; no refer-
ence to a separately specified “generative model” is needed.

But this is also what the solution to the problem (6) requires, if (i) we rewrite (6) in the form (7),
and consider the limiting case in which both β1−1 and β2 are negligible (but the ratio (β1−1)/β2 =

ψ > 0 remains well-defined); and (ii) the class of possible generative models is necessarily flexible
enough to allow θ such that (18) holds, regardless of the choice of the encoding model. In such a
limiting case, the optimal generative model θ is given by (18), for any choice of ϕ, because of the
identity (1). Then DKL(pϕ||p̃θ) = 0 regardless of the choice of ϕ, and R is equal to I , the mutual
information between x and j implied by the encoding model ϕ. The problem then reduces to a
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choice of the encoding rule to solve
min
ϕ
L + ψI, (19)

as assumed in the RI literature. The standard RI problem also assumes that there is no restriction
on the class of possible encoding rules (including no limit on how large the set of latent states may
be).

This yields a highly parsimonious theory, but arguably an unrealistic one, in that it assumes that
a very difficult (high-dimensional) optimization problem is solved, and that the solution should
depend on more information about the environment than can be obtained from any finite body of
experience. The fact that the RI model represents a limiting case of the problem (6), however,
means that the solution to a more computationally tractable version of this problem can be viewed
as an approximation to an RI model.

Note that it does not follow, though, that versions of the general problem (6) in which β1 > 1

must be the ones of economic interest. RI theory assumes that β1 > 1 (i.e., that ψ > 0) because
it is only in this case that the theory implies that decision making should be at all imprecise. (The
mutual information term in problem (19) would otherwise be irrelevant.) In our theory, instead, it
will in general not be possible to simultaneously achieve DKL(pϕ||p̃θ) = 0 and perfectly accurate
choice; hence even when β1 ≤ 1, often VAE parameters will be learned that imply stochastic
choice.

A.1.2 Implications of RI for the Coordination Game

We have seen (Figure 2) that subjects’ behavior appears to respond less accurately to the exact state
x than is required for an equilibrium with perfect optimization, and RI models with ψ > 0 provide
one possible explanation for imprecision in this sense. But in fact the kind of behavior shown in
the figure is not well captured by the kind of imprecise decision making assumed in RI models, and
applied to this kind of coordination game by Yang (2015). The information structure that solves
the problem (19), when applied to a binary choice problem like the one faced by players in this
game, involves exactly two possible latent states (“signals” in the terminology of Sims), one of
which leads the DM to leave and the other of which leads them to stay. The implied probabilities
of action choice are then of the form

P(a |x) =
p̄(a) exp[−ψ−1L̄(a, x)]∑
ã∈A p̄(ã) exp[−ψ−1L̄(ã, x)]

, (20)
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for each of the two actions a ∈ A, where p̄(a) is the unconditional probability of choosing action
a (or of receiving the signal that leads to this choice), and

L̄(a, x) ≡ E[L(a, a′; x) |a, x]

is the expected loss from choosing action a in state x, given the stochastic choice rule (conditional
on x) of the other player.

If we restrict attention to solutions that conform to both of the two symmetries of the game
discussed in section 3.1 of the main text, then the choice probabilities conditional on x will be the
same for both players, and in addition, for either player we will have P(a |x) = P(−a | − x) for
both a and all x, where −a means the action opposite to a. The symmetry of the prior density then
implies that in such a solution we must have p̄(a) = p̄(−a) = 1/2. Substituting this solution for
p̄(a) into (20), we conclude that

p(x) ≡ P(stay |x) = [1 + exp(−2ψ−1∆U)]−1, (21)

where we again use the notation

∆U ≡ L̄(leave |x) − L̄(stay |x)

for the net expected reward from staying rather than leaving,34 given the state x and the implied
probability of the other player’s staying.

We can again define an equilibrium correspondence as the set of all pairs (x, p) with the prop-
erty that if the state is x and the other player’s probability of staying is p, the RI solution (21)
implies that a player should stay with exactly probability p. Using (9) to substitute for ∆U in (21),
we conclude that (x, p) belong to this correspondence if and only if

x = (2p− 1) − ψ

2
log

( p

1− p

)
. (22)

A symmetric RI equilibrium is then characterized by a function p(x) such that (i) for any real
number x, the pair (x, p(x)) belong to the equilibrium correspondence, and (ii) p(−x) = 1− p(x)

for all x.
It is easy to show that such an equilibrium exists.35 Note that there is a single value of x

consistent with (22), for each value p ∈ (0, 1). This defines a function x(p) that is continuous; with

34Here we identify the “loss” in the RI problem (19) with the negative of the reward shown in the game payoff
matrix (2).

35In fact, in the case of any small enough value of ψ, there are many possible solutions. See Yang (2015) for
discussion of the indeterminacy of the RI solution.
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a range equal to the entire real line; and with the symmetry x(1 − p) = −x(p) for all p ∈ (0, 1).
Hence for any x > 0, one can find at least one p ∈ (0, 1) such that x(p) = x; let this be our
solution for p(x) when x > 0. Then setting p(0) = 1/2 and p(x) = 1− p(−x) for any x < 0, one
obtains a solution for all x with the desired properties. Moreover, the solution necessarily involves
0 < p(x) < 1 for all x, so that the theory predicts stochastic action selection over a range of values
of x, as observed in the behavior of the experimental subjects shown in Figure 2.

However, it remains the case, at least for all small enough values of the information cost pa-
rameter ψ, that the predicted action probabilities do not decline gradually with increases in x, in
the way seen in Figure 2. Note that for any p ∈ (0, 1), equation (21) implies that x(p) → 2p− 1,

the function characterizing the equilibrium correspondence in Figure 1, in the limit as ψ → 0.

At the same time, for any ψ > 0, equation (21) implies that x(p) → −∞ as p → 1 and that
x(p) → +∞ as p → 0. Hence for any small enough value of ψ > 0, the graph of the equilibrium
correspondence must be similar to the one shown in Figure 1, but with the corners smoothed (a
backwards-S shape rather than a Z shape). It then follows that any single-valued function p(x) that
is a selection from the correspondence must involve a discontinuous jump at one or more values
of x. In fact, one can easily show that x(p) is a non-monotonic function in the case of any cost
parameter ψ < 1, so that a symmetric RI equilibrium must involve a discontinuous jump in any
of those cases. Yet no such discontinuity is visible in Figure 2, in the case of either of the two
treatments.

There is another important respect in which Figure 2 is problematic for the RI model. As
Frydman and Nunnari (2023) stress, the rate at which the probability of choosing to stay declines
with increases in x is sharper when the state x is drawn from the low-variance distribution than
when it is drawn from the high-variance distribution. Yet equation (22) describes the equilibrium
correspondence for the RI model, regardless of the prior distribution from which x is drawn: we
have only assumed that the prior is symmetric (in the sense that π(−x) = π(x) for all x), as is
true in both of the treatments of Frydman and Nunnari. Hence if p(x) represents a symmetric RI
solution in the case of one symmetric prior, it must also represent a symmetric RI solution in the
case of every other symmetric prior; and the two choice curves shown in Figure 2 cannot both
represent selections from the same equilibrium correspondence. Thus the treatment effect shown
in Figure 2 is contrary to the prediction of the RI model.

In the main text, we show instead that our VAE model of imprecise action selection predicts
stochastic choice for all values of x; a function p(x) that decreases continuously and monotonically
with increases in x; and one that should be flatter when the variance of the prior is greater — all
features of the experimentally observed behavior displayed in Figure 2.
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A.2 Other Models of Imprecise Coordination

There are a number of other approaches that also model subjects’ choices as stochastic conditional
on the current value of x, that we discuss more briefly.

Probably the most influential model of stochastic choice in strategic settings of the kind consid-
ered here is the theory of quantal response equilibrium (QRE: Goeree et al. (2016)). QRE assumes
that each player’s action selection probabilities are determined by the (correctly learned) average
equilibrium payoffs associated with the alternative actions. But instead of assuming that the action
with the higher average equilibrium payoff is chosen with certainty, the probability of staying is
assumed to be a continuously increasing function of the difference in expected payoffs ∆U . As
Frydman and Nunnari (2023) discuss, QRE predicts that there should be no change in P(stay |x)
as a function of x across environments with different prior distributions, of the kind seen in Figure
2. The reason is closely related to our discussion above of why RI theory predicts no change, if
the parameter ψ is the same across environments. If we restrict attention to symmetric equilibria,
as in our discussion above, then we must have p̄(a) = 1/2 for both actions; and in this case (20)
reduces to a logistic function of the expected payoff difference, a commonly used specification in
QRE models (“logit QRE”).

This assumes that the QRE parameter specifying the sensitivity of choice to the expected pay-
off difference (analogous to the parameter ψ in (20)) should remain the same across environments.
Friedman (2020) instead proposes a generalization of standard QRE modeling in which the pre-
cision parameter is endogenously determined for a particular game. However, endogenizing the
precision parameter for each possible game (i.e., each possible payoff matrix) still implies that
equilibrium action selection probabilities should be determinate functions of x, independently of
the prior from which x is drawn; thus without introducing cognitive imprecision of additional sort
(as in our approach), there would still be no reason for observed behavior to differ across the two
treatments of Frydman and Nunnari (2023).

Frydman and Nunnari (2023) instead propose a model in which (as in our model) decisions are
assumed to be based on an imprecise internal representation of the external state; they further posit
a model in which the precision of encoding varies endogenously with the statistics of the envi-
ronment, based on models of efficient coding from the neuroscience literature on neural coding of
sensory features. In their model, the internal representation is specified by a real number r (rather
than a discrete latent state, as assumed in our model), and the encoding probabilities p(r |x) are
assumed to be the same functions of a rescaled state variable (“range normalization”), regardless
of the variance of the prior distribution. Our model also has this property, if instead of minimizing
a weighted sum of DKL and L, we consider the closely related problem of minimizing L subject to
an upper bound D̄ on the admissible size ofDKL. If we assume that the bound D̄ is invariant across
different prior distributions for x, the VAE model will also predict range normalization. Because
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our model also assumes an imprecise encoding rule, the precision of which varies endogenously
in order to minimize a loss function, it can be viewed as a type of efficient coding model, and in
this respect our explanation for context-sensitive behavior is closely related to that of Frydman and
Nunnari (2023).

There is however a subtle difference between our formulation and theirs. Efficient coding mod-
els emphasize the existence of computational constraints on the class of possible encoding models
(often taken to represent neurobiological constraints), but frequently assume optimal decoding of
the information contained in the imprecise internal representation (as Frydman and Nunnari (2023)
do). Our model assumes restrictive parametric families for both encoding and decoding (as is stan-
dard in the VAE literature), but we would argue that it is the restricted class of possible generative
models (decoding models) that is crucial for our conclusions. Given our assumed class of possible
generative models (with only two latent states), even in the case of a fully flexible recognition
model it will not be possible to achieve a value of DKL(pϕ||p̃θ) lower than a specified bound (for a
low enough value of the bound D̄), except by choosing a value of µ that is not too large and a value
of σ that is not too small — so that the marginal distribution for x that is implied by the generative
model is not too different from the prior distribution π(x) — and by choosing a recognition model
that is stochastic, so that the joint distribution for (x, j) implied by the recognition model is not
too different from the one implied by the generative model. Moreover, the optimized values of µ
and σ will be proportional to the value of ω, as in our discussion above, and because of this, the
optimal recognition model will again imply a discrimination threshold proportional to the value
of ω, even when it is chosen with complete flexibility. Thus it is the coarseness of the class of
possible generative models — which we justify on the ground that it allows the generative model
to be learned on the basis of even a small sample of experience — that plays the crucial role in our
analysis.

Mauersberger (2022) offers another model of imprecise action selection in strategic settings,
based on the idea of “Thompson sampling” from the machine learning literature on bandit prob-
lems. He proposes that at each decision point, a DM samples one element from a correct Bayesian
posterior over possible decision situations, and then chooses the action that would be optimal for
that situation; sampling a single element (rather than optimizing against the entire posterior distri-
bution) introduces intrinsic randomness into the DM’s behavior. And since an environment with
greater prior uncertainty should lead to more dispersed posteriors as well, this model provides an
explanation for noisier behavior in more uncertain environments. (Indeed, Mauersberger stresses
this result, and contrasts it with the QRE prediction.) But the motivation for optimizing against
a single sample remains unclear.36 Our VAE approach instead provides an explanation for ran-

36In the literature on Thompson sampling, sampling is typically argued to provide a desirable degree of experimen-
tation with options that might turn out to be better than had been believed on the basis of incomplete evidence. But in

50



domness in the classification of an objective situation summarized by the value of x, as discussed
above. The stochastic recognition rule can be viewed as similar to sampling from a posterior (over
the possible latent states that may have given rise to the current situation, according to the genera-
tive model); the decision rule a(j) then selects an action that is optimal under the beliefs about the
situation implied by that latent state (according to the generative model). Thus our model can be
viewed as providing a justification for something similar to posterior sampling.

Finally, Arifovic et al. (2013) propose an evolutionary model to explain the variability of ob-
served behavior in a multi-player version of the kind of coordination game that we study here.
In this kind of model, predicted play is random as a result of randomness in both the mutations
through which new strategies enter the population of active strategies and the randomness of the
process of selection through which less-successful strategies are culled. While the architecture that
we propose is fairly different from the one that they assume, we also model the way in which the
strategies used by players evolve over time to be better adapted to their environment (including
the effects of the evolving strategies of other players), and our learning algorithm (described in
section 7 and in Appendix C below) also involves an element of random sampling. Our model also
shares with theirs the feature that players optimize their behavioral models over a restrictive class
of possible algorithms, in response to observed play by others. The use of a restrictive class of
possible algorithms may well be important for explaining why the degree of imprecision observed
in the behavior of human subjects should persist even with experience.

B Additional Figures

B.1 Symmetric Equilibrium of the Game Between VAEs

In section 5.3 of the main text, we discuss how the properties of the symmetric equilibrium vary
with the value of β, for some fixed value of ω. Here we provide additional visual illustration of
what the equilibrium VAEs of the players are like, and how they vary as the value of β is increased.

The optimal encoding and decoding models are shown for a few values of β, and two different
values of ω (corresponding to the two experimental conditions in the experiment of Frydman and
Nunnari (2023)) in Figure 12. The panels in the left column display the joint distribution for (j, x)
implied by the generative model by plotting the conditional density function for x associated with
each of the two latent states j = −1, 1, which states are assigned equal unconditional probability.
(Each panel actually shows four conditional distributions, because two different generative models
are shown in each panel: the optimal generative model when ω = ωlow (in blue) and the one when

the coordination game discussed here, there is no need to choose a particular action in order to learn more about the
distribution of payoffs associated with that action, and hence no benefit from experimentation.
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Figure 12: Equilibrium generative and recognition models (common to both players), for each of
several values of β (the different rows). Each panel shows the results for two different symmetric
priors, the case ω = ωlow (blue) and the case ω = ωhigh (red).
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ω = ωhigh (in red).) The panels in the right column display the corresponding recognition (or
encoding) models. Note that when there are only two latent states, as assumed here, the recognition
model is completely specified by plotting the function pϕ(−1 |x) as a function of x. (Each panel
contains two curves, though, again corresponding to the two different values of ω.)

The first row shows the optimal VAE for the training objective with β = 0 (which corresponds
to the standard VAE model of Kingma and Welling (2014)). In this case, the optimal encoder
(recognition model) fails to distinguish at all between different external states (λ = 0), making
the latent state completely uninformative about the latent state. As a consequence, the optimal
generative model is one in which the distribution p̃θ(x |j) is the same for both latent states, and
equal to the prior distribution π(x).37 Because the joint distributions pϕ and p̃θ are identical in this
case (both are equal to the product of a uniform distribution over the two latent states and the prior
distribution over x), the objective DKL(pϕ||p̃θ) achieves its minimum possible value, zero.

This collapse of the optimal model to one in which the latent states are completely uninfor-
mative illustrates the problem with the classic VAE formulation that leads Alemi et al. (2018) to
propose their “β-VAE” alternative. We instead show that we can obtain informative latent states
without assigning a direct premium to informativeness as such, by using a training objective (4)
with a weight β > 0. The second and third rows of the figure illustrate the consequences of pro-
gressively increasing β.When β > 0, the distributions p̃θ(x |j) are different between the two latent
states (left panels), and the encoding rule is one in which the probability of classifying the state
using latent state j = −1 is higher the more negative the external state x is (right panels). With an
even larger weight put on the accuracy of action selection (as in the bottom row), the optimal en-
coding rule differentiates even more sharply between higher and lower values of x, and the optimal
generative model correspondingly associates more sharply differentiated distributions of values of
x with the two latent states.

Figure 12 also illustrates the effects of a change in ω for a given value of β. When β = 0, the
optimal recognition model is one that implies that the latent state will be completely uninformative,
regardless of the value of ω. But for values of β > 0 (but still small enough to be below the upper
bound β̄), the degree to which it is optimal for the recognition model to discriminate between
nearby values of x depends on the size of ω, for reasons already discussed in the main text (see
section 6.2). Note that the two recognition models shown in the right panel of the second row
directly correspond to the two curves shown in Figure 9 of the main text, since the probability of
assigning latent state j = −1 is also (given the assumed decision rule) the probability of choosing
to stay.

For large enough values of β, neither the exact value of β nor the size of ω matters for the form

37Thus the two curves in the left panel of the first row illustrate the difference between the priors associated with
the two experimental treatments.
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Figure 13: Equilibrium generative and recognition models (common to both players) when β = 2,
shown for the same two values of ω as in Figure 12. (Here the optimal encoding rules for the two
values of ω coincide.)

of the optimal recognition model, because perfect discrimination between positive and negative
values of x comes to be optimal. This is illustrated in Figure 13, which shows the equilibrium
generative and recognition models, using the same format as in Figure 12, but for the value β = 2.

(This is a value large enough to exceed the critical value β̄, as shown in Figure 8.)

Figure 14: The equilibrium value of λ in the recognition models learned by VAE players, under
two different assumptions about the opponent. In both cases, ω = ωhigh.
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B.2 Equilibrium of a Game Between a VAE and a Deterministic Automaton

In section 6.3 of the main text, we discuss the equilibrium that should result if a VAE player plays
against a deterministic automaton, that always leaves if and only if x ≥ 0. Here we illustrate
numerically the difference in the predicted play of the VAE player (in equilibrium, i.e., once adap-
tation to the environment is complete) in this case relative to the one in which two VAEs play each
other (treated in the previous subsection).

As explained in the main text, in both cases the VAE should learn a symmetric recognition
model ϕ = (λ, 0); the only difference is in the value of λ in the two cases. Figure 14 shows the
equilibrium value of λ, plotted as a function of the value of β in the VAE training objective, for each
of the two cases. (The figure is drawn under the assumption that ω = ωhigh, as in the “Algorithm”
condition of the experiment of Frydman and Nunnari (2023).) In either case, the value of λ that
should eventually be learned by any of the VAEs is a monotonically increasing function of β (with
λ→ 0 as β → 0). However, for any value of β in the interval 0 < β < β̄, the equilibrium value of
λ is higher (implying less-random action selection) in the case of play against a computer than in
the case of play against another VAE with the same value of β.

The difference is particularly important if the value of β is neither too small, nor too close to
β̄. (For example, Figure 15 compares the implied choice curves in the two cases when β = 1.0.
Here we again assume that ω = ωhigh.) If instead the value of β is small, the two choice curves
are more similar (choice is nearly insensitive to the value of x, in either case); and this is also true
if the value of β is near β̄, or larger (choice is nearly, or even completely deterministic, in either
case).

C Details of the Learning Algorithm

Here we provide additional details about the learning algorithm proposed in section 7

C.1 FOCs for Optimal Parameterization of the Recognition Model

Taking as given a joint distribution for (x, a′) and generative model θ, we consider the problem of
choosing recognition model parameters ϕ to minimize the training objective (4). Note that in the
two-latent-state case considered here, (10) implies that

pϕ(1 |x) =
exp(ϕTv(x))

exp(ϕTv(x)) + exp(−ϕTv(x))
, (23)
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Figure 15: The probability of staying as a function of the external state x, in the equilibria of games
between different types of players. In both games, the state x is drawn from a prior with standard
deviation ωhigh, and VAEs are trained with an objective in which β = 1.0.

using the notation

ϕ ≡

[
λ

ν

]
, v(x) ≡

[
x

−1

]
.

Hence the gradient is the vector

∇(x) ≡ ∇ϕpϕ(1 |x) = w(x)v(x), (24)

where
w(x) ≡ 2

[exp(ϕTv(x)) + exp(−ϕTv(x))]2

is a positive scalar (that depends on the value of ϕ as well as x).
The first-order conditions for the optimal choice of ϕ can be written in the form

E

[∑
j

Vj(x, a
′) · ∇ϕpϕ(j |x)

]
= 0, (25)

where for each latent state j,

Vj(x, a
′) ≡ βL(a(j), a′;x) + log

π(x)pϕ(j|x)
qθ(j)p̃θ(x|j)

.
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Because
∇ϕpϕ(−1 |x) = −∇ϕpϕ(1 |x),

the system (25) can be written more simply as (13), where38

∆(x, a′) ≡ −1

2
[V1(x, a

′) − V−1(x, a
′)].

If we define sign(a′) as -1 if a′ = stay, and +1 if a′ = leave, then the differential payoffs in the
coordination game can be written as

L(leave, a′;x) − L(stay, a′;x) = −2sign(a′) − 2x.

It then follows that ∆(x, a′) can be written in the form (14), using the definitions

m(x, a′)T ≡ [sign(a′) 1 x x2]

and

ψ1 ≡ β,

ψ2 ≡ 1

2
log

qθ(1)

qθ(−1)
− 1

2
log

σ1
σ−1

− 1

4

[(
µ1

σ1

)2

−
(
µ−1

σ−1

)2
]
,

ψ3 ≡ 1 +
1

2

(
µ1

σ2
1

− µ−1

σ2
−1

)
,

ψ4 ≡ −1

4

(
σ−2
1 − σ−2

−1

)
for the elements of the vector ψ(θ).

C.2 Dynamical Equations

In each period t, pre-existing values for the VAE parameters θt−1, ϕt−1 for each of the two players
are given, and pre-existing values for the moment matrices Mt−1, Nt−1 for each player as well. A
new external state xt is drawn, as an independent draw from the prior distribution corresponding to
the environment at time t. (Note that the recursive algorithm continues to be well-defined even if at
some point the environment shifts.) Each of the VAEs classifies this state as an example of latent
state jt (an independent choice by each of the VAEs), a draw from the conditional distribution
(23) defined by parameters ϕ = ϕt−1, x = xt. Each player then chooses the action at = a(jt)

38The prefactor −1/2 in this definition does not change the implications of equation system (25); it is present solely
in order to allow some expressions to be written more simply in the formulas given below for ∆(x, a′).
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determined by their VAE’s latent state assignment.
The moment matrices and VAE parameters are then updated by each player in the following

way. After observing the state xt and the other player’s action choice a′t, each player can compute
the current value of the vectors vt ≡ v(xt) and mt ≡ m(xt, a

′
t). Each player also computes a

current value for the gradient vector ∇t using (24), in which we again set ϕ = ϕt−1, x = xt. Based
on the history of the algorithm to that point, the current estimates of the moment matrices are given
by

Mt ≡ 1

t

t∑
τ=1

∇τv
T
τ , Nt ≡ 1

t

t∑
τ=1

∇τm
T
τ .

(Note that these are just the moments defined in (16), evaluated using the empirical joint distribu-
tion {(xτ , a′τ ,∇τ )}.)

Equivalently, we can define the current estimates of the moment matrices using the recursions

Mt =
1

t
∇tv

T
t +

t− 1

t
Mt−1, (26)

Nt =
1

t
∇tm

T
t +

t− 1

t
Nt−1, (27)

starting from initial conditions M0 = N0 = 0. Equations (26)–(27) allow Mt and Nt to be calcu-
lated purely on the basis of the pre-existing values Mt−1, Nt−1 and the new observations xt, a′t.

Next, each player’s estimates of the parameters θ for their VAE are updated. As explained in
the main text, the estimate θt is the parameter vector that maximizes the likelihood of the data
{xτ , a′τ}tt=1, under the assumption that the observation (xτ , a

′
τ ) in each period is an independent

draw from the same joint distribution parameterized by θ. And given the parametric family of
generative models assumed here, these MLE estimates are just the sample moments of the data.
The current estimate of qθ(j), which we denote qjt, will just be the fraction of periods (among the
first t periods) in which the latent state is j:

qjt =
1

t

t∑
τ=1

It(j),

where the indicator function It(j) is equal to 1 if jt = j, and to zero otherwise. This element of θt
can be updated recursively:

qjt =
1

t
It(j) +

t− 1

t
qj,t−1. (28)

The parameters of each of the Gaussian conditional distributions p̃θ(x |j) are similarly esti-
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mated on the basis of the corresponding sample moments:

µjt =
1

qjt
· 1
t

t∑
τ=1

Iτ (j)xτ ,

σ2
jt =

1

qjt
· 1
t

t∑
τ=1

Iτ (j)x2τ − (µjt)
2.

Hence these parameters can be updated recursively as well:

µjt =
1

qjt
· 1
t
It(j)xt +

qj,t−1

qjt
· t− 1

t
µj,t−1, (29)

σ2
jt =

1

qjt
· 1
t
It(j)x2t +

qj,t−1

qjt
· t− 1

t
[σ2

j,t−1 + µ2
j,t−1] − (µjt)

2. (30)

Thus the new estimates θt can all be computed using only the previous values θt−1 and the new
observations xt, jt.

Once these are obtained, the new estimates ϕt can be computed using (17). Thus the recursive
algorithm is completely specified by the prior distribution from which xt is drawn each period; the
conditional probabilities (23) for drawing a latent state jt corresponding to the external state xt;
the decision rule at = a(jt); equation (24) for computation of the gradient vector; recursions (26)–
(30) for computing updated estimates of the moment matrices Mt, Nt, and the generative model
parameters θt; and finally equation (17) for updating the recognition model parameters ϕt.

C.3 Convergence

Figure 16 provides additional detail about the longer-run trajectories of the two simulations shown
in Figure 10 of the main text. Rather than νt, the vertical axis now plots the logarithm of the
absolute distance of νt from ν∗, the predicted equilibrium value of the parameter in the symmetric
equilibrium associated with prior distributionM . And rather than t (or more precisely, the iteration
number t − 1000), the horizontal axis now plots the logarithm of t. We observe that after a large
number of iterations, the path of the estimate νt becomes nearly deterministic, and furthermore
closely follows a negatively-sloped straight line when shown as a log-log plot. This means that for
all large enough t,

log |νt − ν∗| ∼ −γ log t,

for some constant γ > 0. Alternatively (and recalling that ν∗ = 0, because of the symmetry of
distribution M ), it means that

νt ∼ t−γ
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Figure 16: An alternative (log-log) plot of longer-run behavior under the two trajectories shown
in Figure 10. Extrapolation of these paths to larger numbers of iterations implies that one should
observe geometric convergence.

for some constant γ > 0. Moreover, the value of the γ appears to be the same in both simulations
— and thus is evidently independent of the initial conditions — though the intercepts of the two
lines in Figure 16 are different.

If we assume that the same relationship between νt and t continues to hold for even larger
numbers of iterations (and our numerical results indicate that the relationship holds even more
closely the larger the number of iterations), this implies that νt converges eventually to zero (i.e.,
to the equilibrium value ν∗) almost surely. The same is true for the other elements of the vectors ϕt

and θt as well, though we do not show the corresponding figures. This means that under our model
of VAE training, the equilibrium predictions derived in the earlier sections of the paper represent
predictions about the outcome of learning dynamics as t→ ∞, assuming that the prior distribution
eventually ceases to change.
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